
Agility 2017 Hands-on Lab Guide

F5 Programmability Training

https://github.com/f5devcentral/f5-automation-labs/graphs/contributors

2

Contents:

1 Welcome 5

2 Getting Started 7

3 Lab Topology 9

4 Class 1 - Introduction to Automation & Orchestration 11
4.1 Module 1 – REST API Basics & Device Onboarding . 11
4.2 Module 2 – iWorkflow . 35
4.3 Module 3 – f5-super-netops-container Toolkit . 47
4.4 Module 4 – f5-postman-workflows & f5-newman-wrapper . 55
4.5 Module 5 - Python SDK . 81

5 HOWTOs: Index 91
5.1 HOWTO - Update Existing iApp templates to Work with iWorkflow v2.1 91

3

4

1
Welcome

Welcome to F5’s Automation, Orchestration and Programmability Training series. The intended audience for
these labs are Super NetOps and DevOps engineers that would like to leverage the various programmability
tools offered by the F5 platform. If you require a pre-built lab environment please contact your F5 account
team and they can provide access to environments on an as-needed basis.

The content contained here leverages a full DevOps CI/CD pipeline and is sourced from the following GitHub
repository:

https://github.com/f5devcentral/f5-automation-labs/

Bugs and Requests for enhancements can be made using by opening an Issue within the repository.

5

https://github.com/f5devcentral/f5-automation-labs/
https://github.com/f5devcentral/f5-automation-labs/issues

6

2
Getting Started

Please follow the instructions provided by the instructor to start your lab and access your jump host.

Note: All work for this lab will be performed exclusively from the Windows jumphost. No installation or
interaction with your local system is required.

7

8

3
Lab Topology

The network topology implemented for this lab is very simple. Since the focus of the lab is Control Plane
programmability rather that Data Plane traffic flow we can keep the data plane fairly simple. The following
components have been included in your lab environment:

• 2 x F5 BIG-IP VE (v12.1)

• 1 x F5 iWorkflow VE (v2.1)

• 1 x Linux LAMP Webserver (xubuntu 14.04)

• 1 x Linux Docker Server (CentOS 7)

• 1 x Windows Jumphost

The following table lists VLANS, IP Addresses and Credentials for all components:

9

Component VLAN/IP Address(es) Credentials
Windows
Jumphost • Management: 10.1.1.250

• Internal: 10.1.10.250
• External: 10.1.20.250

Administrator/available in instance de-
tails

BIG-IP A
• Management: 10.1.1.4
• Internal: 10.1.10.1
• Internal (Float): 10.1.10.3
• External: 10.1.20.1

admin/admin

BIG-IP B
• Management: 10.1.1.5
• Internal: 10.1.10.2
• Internal (Float): 10.1.10.3
• External: 10.1.20.2

admin/admin

iWorkflow
• Management: 10.1.1.6

admin/admin

Linux Server
• Management: 10.1.1.7
• Internal: 10.1.10.10-13

root/default

Docker Server
• Management: 10.1.1.8

root/default

10

4
Class 1 - Introduction to Automation & Orchestration

This introductory class covers the following topics:

• Imperative Automation using the F5 BIG-IP iControl REST API

• Declarative Automation using the F5 iWorkflow product

• F5 Automation Tools:

– The f5-super-netops-container

– Collections and the f5-postman-workflows extension to Postman

– Automation Workflows using f5-newman-wrapper

Expected time to complete: 6 hours

4.1 Module 1 – REST API Basics & Device Onboarding

In this module you will learn the basic concepts required to interact with the BIG-IP iControl REST API.
Additionally, you will walk through a typical Device Onboarding workflow that results in a fully functional
BIG-IP Active/Standby pair. It’s important to note that this module will focus on showing an Imperative
approach to automation.

Note: The Lab Deployment for this lab includes two BIG-IP devices. For most of the labs we will focus on
configuring only the BIG-IP-A device (management IP and licensing have already been completed). BIG-
IP-B already has some minimal configuration loaded. In a real-world environment it would be necessary
to perform Device Onboarding functions on ALL BIG-IP devices. We are only performing them on a single
device in this lab so we are able to cover all topics in the time allotted.

Note: It’s beneficial to have GUI/SSH sessions open to BIG-IP and iWorkflow devices while going through
this lab. Feel free to verify the actions taken in the lab against the GUI or SSH. You can also watch the
following logs:

• BIG-IP:

– /var/log/ltm

– /var/log/restjavad.0.log

11

• iWorkflow:

– /var/log/restjavad.0.log

4.1.1 Lab 1.1 – Exploring the iControl REST API

Task 1 – Explore the API using the TMOS Web Interface

In this lab we will explore the API using an interface that is built-in to TMOS. This utility is useful for un-
derstanding how TMOS objects map to the REST API. The interfaces implement full Create, Read, Update
and Delete (CRUD) functionality, however, in most practical use cases it’s far easier to use this interface as
a ‘Read’ tool rather than trying to Create objects directly from it. It’s usually far easier to use TMUI or TMSH
to create the object as needed and then use this tool to view the created object with all the correct attributes
already populated.

1. Open Google Chrome and navigate to the following bookmarks: BIG-IP A GUI, BIG-IP B GUI and
iWorkflow GUI. Bypass any SSL errors that appear and ensure you see the login screen for each
bookmark.

2. Navigate to the URL https://10.1.1.4/mgmt/toc (or click the BIG-IP A REST TOC bookmark). The
‘/mgmt/toc’ path in the URL is available on all TMOS versions 11.6 or newer.

3. Authenticate to the interface using the default admin/admin credentials.

4. You will now be presented with a top-level list of various REST resources. At the top of the page there

is a search box that can be used to find items on the page. Type ‘net’ in the search box

and then click on the ‘net’ link under iControl REST Resources:

5. Find the /mgmt/tm/net/route-domain Collection and click it.

6. You will now see a listing of the Resources that are part of the route-domain(s) collection. As you can

see the default route domain of 0 is listed. You can also create new objects by clicking the button.

Additionally resources can be deleted using the button or edited using the button.

7. Click the 0 resource to view the attributes of route-domain 0 on the device:

12

https://10.1.1.4/mgmt/toc

Take note of the full path to the resource. Here is how the path is broken down:

/ mgmt / tm / net / route-domain / ~Common~0
| Root | OC | OC | Collection | Resource

*OC=Organizing Collection

4.1.2 Lab 1.2 – REST API Authentication & ‘example’ Templates

One of the many basic concepts related to interaction with REST API’s is how a particular consumer is
authenticated to the system. BIG-IP and iWorkflow support two types of authentication: HTTP BASIC and
Token based. It’s important to understand both of these authentication mechanisms, as consumers of the
API will often make use of both types depending on the use case. This lab will demonstrate how to interact
with both types of authentication.

Task 1 - Import the Postman Collection & Environment

In this task you will Import a Postman Collection & Environment for this lab. Perform the following steps to
complete this task:

1. Open the Postman tool by clicking the icon of the taskbar of your Windows Jumphost

2. Click the ‘Import’ button in the top left of the Postman window

3. Click the ‘Import from Link’ tab. Paste the following URL into the text box and click ‘Import’

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/
ondemand/postman_collections/F5_Automation_Orchestration_Intro.postman_
collection.json

13

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/F5_Automation_Orchestration_Intro.postman_collection.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/F5_Automation_Orchestration_Intro.postman_collection.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/F5_Automation_Orchestration_Intro.postman_collection.json

4. You should now see a collection named ‘F5 Automation & Orchestration Intro’ in your Postman Col-
lections sidebar:

5. Import the Environment file by clicking ‘Import’ -> ‘Import from Link’ and pasting the following URL
and clicking ‘Import’:

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/
ondemand/postman_collections/INTRO_Automation_Orchestration_Lab.postman_
environment.json

6. To assist in multi-step procedures we make heavy use of the ‘Environments’ capability in Postman.
This capability allows us to set various global variables that are then substituted into a request before
it’s sent. Set your environment to ‘INTRO - Automation & Orchestration Lab’ by using the menu at the
top right of your Postman window:

Task 2 – HTTP BASIC Authentication

In this task we will use the Postman tool to send API requests using HTTP BASIC authentication. As its
name implies this method of authentication encodes the user credentials via the existing BASIC authentica-

14

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/INTRO_Automation_Orchestration_Lab.postman_environment.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/INTRO_Automation_Orchestration_Lab.postman_environment.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/INTRO_Automation_Orchestration_Lab.postman_environment.json

tion method provided by the HTTP protocol. The mechanism this method uses is to insert an HTTP header
named ‘Authorization’ with a value that is built by Base 64 encoding the string <username>:<password>.
The resulting header takes this form:

Authorization: Basic YWRtaW46YWRtaW4=

It should be noted that cracking the method of authentication is TRIVIAL; as a result API calls should always
be performed using HTTPS (F5 default) rather than HTTP.

Perform the following steps to complete this task:

1. Click the ‘Collections’ tab on the left side of the screen, expand the ‘F5 Automation & Orchestration
Intro’ collection on the left side of the screen, expand the ‘Lab 1.2 – API Authentication’ folder:

2. Click the ‘Step 1: HTTP BASIC Authentication’ item. Click the ‘Authorization’ tab and select ‘Basic
Auth’ as the Type. Fill in the username and password (admin/admin) and click the ‘Update Request’
button. Notice that the number of Headers in the Headers tab changed from 1 to 2. This is because
Postman automatically created the HTTP header and updated your request to include it. Click the
‘Headers’ tab and examine the HTTP header:

3. Click the ‘Send’ button to send the request. If the request succeeds you should be presented with a
listing of the /mgmt/tm/ltm Organizing Collection.

4. Update the credentials and specify an INCORRECT password. Send the request again and examine
the response:

15

Task 3 – Token Based Authentication

One of the disadvantages of BASIC Authentication is that credentials are sent with each and every request.
This can result in a much greater attack surface being exposed unnecessarily. As a result Token Based
Authentication (TBA) is preferred in many cases. This method only sends the credentials once, on the
first request. The system then responds with a unique token for that session and the consumer then uses
that token for all subsequent requests. Both BIG-IP and iWorkflow support token-based authentication
that drops down to the underlying authentication subsystems available in TMOS. As a result the system
can be configured to support external authentication providers (RADIUS, TACACS, AD, etc) and those
authentication methods can flow through to the REST API. In this task we will demonstrate TBA using the
local authentication database, however, authentication to external providers is fully supported.

For more information about external authentication providers see the section titled “About external au-
thentication providers with iControl REST” in the iControl REST API User Guide available at https:
//devcentral.f5.com

Perform the following steps to complete this task:

1. Click the ‘Step 2: Get Authentication Token’ item in the Lab 1.2 Postman Collection

2. Notice that we send a POST request to the /mgmt/shared/authn/login endpoint.

3. Click the ‘Body’ tab and examine the JSON that we will send to BIG-IP to provide credentials and the
authentication provider:

4. Modify the JSON body and add the required credentials (admin/admin). Then click the ‘Send’ button.

5. Examine the response status code. If authentication succeeded and a token was generated the
response will have a 200 OK status code. If the status code is 401 then check your credentials:

Successful:

16

https://devcentral.f5.com
https://devcentral.f5.com

•

Unsuccessful:

•

6. Once you receive a 200 OK status code examine the response body. The various attributes show the
parameters assigned to the particular token. Find the ‘token’ attribute and copy it into your clipboard
(Ctrl+c) for use in the next step:

7. Click the ‘Step 3: Verify Authentication Works’ item in the Lab 1.2 Postman collection. Click the
‘Headers’ tab and paste the token value copied above as the VALUE for the X-F5-Auth-Token
header. This header is required to be sent on all requests when using token based authentication.

8. Click the ‘Send’ button. If your request is successful you should see a ‘200 OK’ status and a listing of
the ltm Organizing Collection.

9. We will now update your Postman environment to use this auth token for the remainder of the lab.
Click the Environment menu in the top right of the Postman window and click ‘Manage Environments’:

17

10. Click the ‘INTRO – Automation & Orchestration Lab’ item:

11. Update the value for bigip_a_auth_token by Pasting (Ctrl-v) in your auth token:

12. Click the ‘Update’ button and then close the ‘Manage Environments’ window. You’re subsequent
requests will now automatically include the token.

13. Click the ‘Step 4: Set Authentication Token Timeout’ item in the Lab 1.2 Postman collection. This
request will PATCH your token Resource (check the URI) and update the timeout attribute so we can
complete the lab easily. Examine the request type and JSON Body and then click the ‘Send’ button.
Verify that the timeout has been changed to ‘36000’ in the response:

18

Task 4 – Get a pool ‘example’ Template

In order to assist with REST API interactions you can request a template of the various attributes of a
Resource type in a Collection. This template can then be used as the body of a POST, PUT or PATCH
request as needed.

Perform the following steps:

1. Click the ‘Step 5: Get ‘example’ of a Pool Resource’ item in the Lab 1.2 Postman collection

2. Examine the URI. Notice the addition of example at the end of the collection name:

3. Click ‘Send’ and examine the FULL response. You will see descriptions and then all the attributes for
the Pool resource type. The response also shows the default values for the attributes if applicable:

4.1.3 Lab 1.3 – Review/Set Device Settings

Your BIG-IP-A device is already licensed, so now we can focus on configuring the basic infrastructure related
settings to complete the Device Onboarding process. The remaining items include (list not exhaustive):

• Device Settings

19

– NTP/DNS Settings

– Remote Authentication

– Hostname

– Admin Credentials

• L1-3 Networking

– Physical Interface Settings

– L2 Connectivity (VLAN, VXLAN, etc.)

– L3 Connectivity (Self IPs, Routing, etc.)

• HA Settings

– Global Settings

* Config Sync IP

* Mirroring IP

* Failover Addresses

– CMI Device Trusts

– Device Groups

– Traffic Groups

– Floating Self IPs

We will specifically cover the items in BOLD above in the following labs. It should be noted that many
permutations of the Device Onboarding process exist due to the nature of customer environments. This
class is designed to teach enough information so that you can then apply the knowledge learned and help
articulate and/or deliver a specific solution for your environment.

Task 1 – Set Device Hostname & Disable GUI Setup Wizard

In this task we will modify the device hostname and disable the GUI Setup Wizard. The Resource that
contains these settings is /mgmt/tm/sys/global-settings.

Perform the following steps to complete this task:

1. Expand the “Lab 1.3 – Review/Set Device Settings” folder in the Postman collection

2. Click the “Step 1: Get System Global-Settings” item. Click the ‘Send’ button and review the response
body to see what the current settings on the device are.

3. Click the “Step 2: Set System Global-Settings” item. This item uses a PATCH request to the
global-settings resource to modify the attributes contained within it. We will update the
guiSetup and hostname attribute.

• Review the JSON body and modify the ‘hostname’ attribute to set the hostname to bigip-a.
f5.local

20

• Also notice that we are disabling the GUI Setup Wizard as part of the same request:

4. Click the ‘Send’ button and review the response body. You should see that the attributes modified
above have been updated. You can also GET the global-settings again to verify they have been
updated.

Task 2 – Modify DNS/NTP Settings

Note: This task will make use of JSON arrays. The syntax for defining a JSON array is:

myArray: [Object0, Object1 ... ObjectX]

To define and array consisting of Strings the syntax is:

myStringArray: ["string0", "string1" ... "stringX"]

Much like the previous task we can update system DNS and NTP settings by sending a PATCH request to
the correct resource in the ‘sys’ Organizing Collection. The relevant Resources for this task are:

URL Type
/mgmt/tm/sys/dns DNS Settings
/mgmt/tm/sys/ntp NTP Settings

Perform the following steps to complete this task:

1. Click the “Step 3: Get System DNS Settings” item in the collection. Click ‘Send’ and review the current
settings

2. Click the “Step 4: Set System DNS Settings” item in the collection. Review the JSON body to verify
the name server IPs 4.2.2.2 and 8.8.8.8 are listed. Additionally add a search domain of ‘f5.local’.
You will modify a JSON array for both of these attributes.

3. Click the ‘Send’ button and verify the requested changes were successfully implemented

4. Click the “Step 5: Get System NTP Settings” item in the collection. Click ‘Send’ and review the current
settings

5. Click the “Step 6: Set System NTP Settings” item in the collection. Review the JSON body to verify
the NTP servers with hostnames 0.pool.ntp.org and 1.pool.ntp.org are contained in the
servers attribute (another JSON array!)

6. Click the ‘Send’ button and verify the requested changes were successfully implemented

Task 3 – Update default user account passwords

In this task we will update the passwords for the ‘root’ and ‘admin’ accounts. The process for updating the
root account is different then other system accounts due to the special nature of the root account.

21

To update the root account password we will use a POST to a shared REST worker at /mgmt/shared/
authn/root

To update all other system accounts we will PATCH the /mgmt/auth/user/<username> Resource

Perform the following steps to change the root user password:

1. Click the “Step 7: Set root User Password” item in the collection.

2. Notice that we a performing a POST operation to a shared REST worker. Modify the JSON body to
update the password to the value “newdefault” and click the ‘Send’ button.

3. You can verify the password was changed by opening an SSH session using PuTTY to BIG-IP-A.

4. Repeat the procedure above to change the password back to “default”

Perform the following steps to change the admin user password:

1. Click the “Step 8: Set admin User Password” item in the collection.

2. Notice that we a performing a PATCH operation to admin user Resource. Modify the JSON body to
update the password to the value “newadmin” and click the ‘Send’ button.

3. You can verify the password was changed by opening an SSH session using PuTTY to BIG-IP-A OR
by logging into TMUI in a Chrome browser tab.

4. Repeat the procedure above to change the password back to “admin”

4.1.4 Lab 1.4 – Basic Network Connectivity

This lab will focus on configuration of the following items:

• L1-3 Networking

– Physical Interface Settings

– L2 Connectivity (VLAN, VXLAN, etc.)

– L3 Connectivity (Self IPs, Routing, etc.)

We will specifically cover the items in BOLD above in the following labs. It should be noted that many
permutations of the Device Onboarding process exist due to the nature of customer environments. This

22

class is designed to teach enough information so that you can then apply the knowledge learned and help
articulate and/or deliver a specific solution to your customer.

The following table lists the L2-3 network information used to configure connectivity for BIG-IP-A:

Type Name Details
VLAN Internal Interface: 1.1

Tag: 10
VLAN External Interface: 1.2

Tag: 20
Self IP Self-Internal Address: 10.1.10.1/24

VLAN: Internal
Self IP Self-External Address: 10.1.20.1/24

VLAN: External
Route Default Network: 0.0.0.0/0

GW: 10.1.20.254

Task 1 – Create VLANs

Note: This lab shows how to configure VLAN tags, but does not deploy tagged interfaces. To use tagged
interfaces the tagged attribute needs to have the value true

Perform the following steps to configure the VLAN objects/resources:

1. Expand the “Lab 1.4 – Basic Network Connectivity” folder in the Postman collection.

2. Click the “Step 1: Create a VLAN” item in the collection. Examine the JSON body; the values for
creating the Internal VLAN have already been populated.

3. Click the ‘Send’ button to create the VLAN

4. Repeat Step 1, however, this time modify the JSON body to create the External VLAN using the
parameters in the table above.

5. Click the “Step 2: Get VLANs” item in the collection. Click the ‘Send’ button to GET the VLAN collec-
tion. Examine the response to make sure both VLANs have been created.

Task 2 – Create Self IPs

Perform the following steps to configure the Self IP objects/resources:

1. Click the “Step 3: Create a Self IP” item in the collection. Examine the JSON body; the values for
creating the Self-Internal Self IP have already been populated.

2. Click the ‘Send’ button to create the Self IP

3. Repeat Step 1, however, this time modify the JSON body to create the Self-External Self IP using the
parameters in the table above.

4. Click the “Step 4: Get Self IPs” item in the collection. Click the ‘Send’ button to GET the Self IP
collection. Examine the response to make sure both Self IPs have been created.

23

Task 3 – Create Routes

Perform the following steps to configure the Route object/resource:

1. Click the “Step 5: Create a Route” item in the collection. Examine the JSON body; the values for
creating the Default Route have already been populated.

2. Click the ‘Send’ button to create the Route

3. Click the “Step 6: Get Routes” item in the collection. Click the ‘Send’ button to GET the routes
collection. Examine the response to make sure the route has been created.

4.1.5 Lab 1.5 – Build a BIG-IP Cluster

In this lab we will build a active-standby cluster between BIG-IP-A and BIG-IP-B. As mentioned previously,
to save time, BIG-IP-B already has already been licensed and had its device level settings configured.
This lab will walk you through creating the cluster step by step. As you will see complex operation such
as this start to become less effective using the Imperative model of automation. Clustering is one of the
‘transition’ points for most customers to move into the Declarative model (if not already done) due to the
need to abstract device/vendor level specifics from Automation consumers.

The high-level procedure required to create the cluster is:

1. Rename the CMI ‘Self’ Device name to match the hostname of the Device

2. Set BIGIP-A & BIGIP-B CMI Parameters (Config Sync IP, Failover IPs, Mirroring IP)

3. Add BIG-IP-B as a trusted peer on BIGIP-A

4. Check the device_trust_group Sync Group Status

5. Create a sync-failover Device Group

6. Check the status of the created Device Group

7. Perform initial sync of the Device Group

8. Check status (again)

9. Change the Traffic Group to use HA Order failover (not required but shown as an example)

10. Create Floating Self IPs

Task 1 – Rename objects and Setup CMI Global Parameters

In this task we will complete Items 1&2 from the list high-level procedure at the beginning of the lab. One of
the idiosyncrasies of BIG-IP is that when you use the GUI Setup Wizard to set the hostname of the device,
the wizard automatically renames the CMI ‘Self’ device to match the hostname. Since we configured the
hostname via a REST call earlier this action did not take place.

Perform the following steps to rename the CMI ‘Self’ device:

1. Expand the “Lab 1.5 – Build a Cluster” folder in the Postman collection

2. Click the “Step 1: Rename the CMI Self Device’ item in the collection

3. Examine the URI and JSON body. We are sending a POST request to execute the equivalent of
a tmsh mv command to rename the existing object to the /mgmt/tm/cm/device Collection. The
name attribute specifies the current name of the object (the factory default name), while the target
attribute specifies the new name of the object.

4. Click the ‘Send’ button to rename the Resource.

24

5. Change the request type from a POST to a GET and click ‘Send’. Examine the response to make
sure the name was changed successfully.

Perform the following steps to set CMI Device Parameters

1. Click the “Step 2: Set BIGIP-A CMI Device Parameters” item in the collection. Examine the operation
(PATCH), URI and JSON body. We will PATCH the newly renamed object (from the previous step) and
assign the Config Sync IP, Unicast Failover Address/Port and Mirroring IPs:

2. Click the ‘Send’ button and examine the response to ensure the settings were changed

3. Click the “Step 3: Set BIGIP-B CMI Device Parameters” item in the collection. Examine the opera-
tion (PATCH), URI and JSON body. We will PATCH and assign the Config Sync IP, Unicast Failover
Address/Port and Mirroring IPs.

EXTRA CREDIT: How is authentication to BIG-IP-B working if we never got an authentication token?
(Hint: we cheated)

4. Click the ‘Send’ button and examine the response to ensure the settings were changed

Task 2 – Add BIG-IP-B as a Trusted Peer

The CMI subsystem relies on a PKI based device trust model to establish relationships between BIG-IP
systems. In this task we will add BIG-IP-B as a trusted peer of BIG-IP-A. Establishing a trust relationship
is automatically a bi-directional operation. As a result, when we establish the trust relationship, BIG-IP-B
will automatically establish a trust relationship with BIG-IP-A. This task corresponds to items 3&4 in the
high-level procedure.

Perform the following steps to complete this task:

1. Click the “Step 4: Add BIGIP-B Device to CMI Trust on BIGIP-A” item in the collection

2. Examine the operation (POST), URI and JSON body. We are using a special REST worker to add
the device to the CMI trust. Additionally the JSON body must be specified in a very specific man-
ner to ensure this step completes successfully. To minimize the chance for error the values have
been completed for you already. You should, however, review and understand this step fully before
continuing.

3. Click the ‘Send’ button. The response for this request does NOT indicate success, only that the
command is running.

4. To check for success we have to check the status of the Sync Group named “device_trust_group”. To
do this click the “Step 5: Check Sync Group Status” item in the collection. This request will GET the
sync status for all sync groups on the system

25

5. Click the ‘Send’ button and examine the response. The should indicate a color of ‘green’, that bigip-
b.f5.local is connected and ‘In Sync’ (please notify an instructor of any issue):

Task 3 – Create a sync-failover Device Group

This task will create a Device Group object that will contain the two BIG-IP systems. The type of device-
group will be a ‘sync-failover’ group, however, ‘sync-only’ groups can also be created with the same proce-
dure but different attribute values. This task corresponds to items 5-8 in the high-level procedure.

Perform the following steps to complete this task

1. Click the “Step 6: Create Device Group” item in the collection. Examine the request type, URL and
JSON body. We will POST to the ‘/mgmt/tm/cm/device-group’ collection and create a new Resource
called DeviceGroup1 that includes both BIG-IP devices and is set to ‘sync-failover’ type. We are also
setting the device-group to ‘autosync’ so manual syncing is not required when configuration changes
occur:

26

2. Click the ‘Send’ button and examine the response.

3. To check the status of the device-group we have to check the status of the underlying sync group
on the system. Click the ‘Step 7: Check Sync Group Status’ item in the collection and click ‘Send’.
Examine the response and take note that the system is ‘Awaiting Initial Sync’:

4. We will now manually sync DeviceGroup1 to fulfill the need for the Initial Sync. Click the ‘Step 8:
Manually Sync DeviceGroup1’ item in the collection. Examine the request type, URL and JSON body.
We will POST the the ‘/mgmt/tm/cm/config-sync’ worker and tell it to ‘run’ a config-sync of BIG-IP-A
‘to-group’ DeviceGroup1:

5. Click ‘Send’ to initiate the sync

6. Click the ‘Step 9: Check Sync Group Status’ item in the collection and click the ‘Send’ button. Examine
the response to make sure that DeviceGroup1 is ‘In Sync’. You may have to click ‘Send’ multiple times
as the sync operation can take a while to complete.

Task 4 – Perform Additional Operations

The remainder of the steps show how to manipulate various common items related to the HA config. In this
task we will change the Traffic Group to use the ‘HA Order’ failover method. We will then initiate a failover
and show how to view the status of the traffic-group.

27

Perform the following steps to complete this task:

1. Click the “Step 10: Get Traffic Group Properties” item in the collection. Examine the URL, we will GET
the attributes of the ‘traffic-group-1’ resource from the traffic-group collection. Click the ‘Send’ button
and review the response.

2. Click the “Step 11: Change Traffic Group to use HA Order” item in the collection. Examine the request
type, URL and JSON body. We will PATCH the existing resource and specify an ‘haOrder’ attribute to
change the traffic-group behavior.

3. Click the ‘Send’ button and examine the response to verify the change was successful.

4. Click the “Step 12: Get Traffic Group Failover States” item in the collection and click the ‘Send’ button.
Examine the response and determine which device is ‘active’ for the traffic-group:

5. Click EITHER the “Step 13A” or “Step 13B” item in the collection depending on which device is ACTIVE
for the traffic group. Notice that we are sending the request to the ACTIVE device for the traffic group.
Examine the JSON body and click the ‘Send’ button.

6. Click the “Step 14: Get Traffic Group Failover States” item in the collection and click the ‘Send’ button.
Examine the response to determine that the failover occurred properly:

28

Task 5 – Create Floating Self IPs

To complete the HA config we will now create a Floating Self IP on the Internal VLAN.

Perform the following steps to complete this task:

1. Click the “Step 15: Create a Floating Self IP” item in the collection. Examine the request type, URL
and JSON body. We will create a new resource in the /mgmt/tm/net/self collection named ‘Self-
Internal-Floating’ and an IP address of 10.1.10.3.

2. Click the ‘Send’ button and examine the response

3. Click the “Step 16: Get Self IPs” item in the collection and click ‘Send’. Examine the response and
verify the Self IP was created.

4.1.6 Lab 1.6 – Build a Basic LTM Config

In this lab we will build a basic LTM Config using the Imperative automation model. While this lab may seem
simple for basic configurations, the complexity involved with rich L4-7 services quickly makes the Imperative
approach untenable for advanced configurations. The Imperative model relies on the user having in-depth
knowledge of device specifics such as:

• Object types and their attributes

– How many different objects/profiles/options do we have?

• Order of operations

– Monitor before pool before profiles before virtual servers, etc.

– What about L7 use cases like WAF?

29

* WAF Policy -> HTTP Policy -> Virtual Server

• How does this all get deleted?

– You have to reverse the order of operations and ‘undo’ the whole config

* TMOS has lots of issues here

As a result of this it’s recommended for customers to use Imperative automation only for legacy environ-
ments. New environments should shift to a Declarative model.

Task 1 – Build a Basic LTM Config

Perform the following steps to complete this task:

1. Expand the “Lab 1.6 – Build a Basic LTM Config” folder in the Postman collection

2. Click each Step in the folder and ‘Send’ the request. Verify each component is created on the BIG-IP
device using the GUI.

3. After the steps are completed you should be able to connect to http://10.1.20.129 in your browser.

4.1.7 Lab 1.7 – REST API Transactions

Task 1 – Create a Transaction

In this lab we will create a transaction using the REST API. Transactions are very useful in cases where you
would want discreet REST operations to act as a batch operation. As a result the nature of a transaction is
that either all the operations succeed or none of them do. This is very useful when creating a configuration
that is linked together because it allows the roll back of operations in case one fails. All the commands
issued, are queued one after one in the transaction. We will also review how to change the order of a
queued command or remove a single command from the queued list before commiting.

Perform the following steps to complete this task:

1. Expand the ‘Lab 1.7 – Rest API Transactions’ folder in the Postman collection:

30

http://10.1.20.129

2. Click the ‘Step 1: Create a Transaction’ item. Examine the URL and JSON body. We will send a
POST to the /mgmt/tm/transaction worker with an empty JSON body to create a new transaction.

3. Click the ‘Send’ button to send the request. Examine the response and find the ‘transId’ attribute.

4. Save the value of this attribute in the bigip_transaction_id environment variable. Additionally
notice that there are timeouts for both the submission of the transaction and how long it should take
to execute. Be aware that after the ‘timeoutSeconds’ value, this transId will be silently removed:

31

5. Click the ‘Step 2: Add to Transaction: Create a HTTP Monitor’ item in the Postman collection. This
request is the same as a non-transaction enabled request in terms of the request type (POST), URI
and JSON body. The difference is we add a X-F5-REST-Coordination-Id header with a value of
the transId attribute to add it to the transaction:

6. Click the ‘Send’ button and examine the response

7. Examine and click ‘Send’ on Steps 3-6 in the collection

8. Click ‘Step 7: View the Transaction queue’. Examine the request type and URI and click ‘Send’. This
request allows you to see the current list of commands (ordered) that are in the transaction.

Task 2 – Modify a Transaction

1. Click the ‘Step 8: View queued command 4 from Transaction’ item in the collection. Examine the
request type and URI. We will GET the queued command number 4 from the transaction list.

32

2. Click the ‘Step 9: Change Eval Order 4 ->1’ item in the collection. Examine the request
type, URI and JSON body. We will PATCH our transaction resource and change the value of
the ‘evalOrder’ attribute, from 4 to 1, to move at the first position of the transaction queue:

33

3. Click the ‘Step 10: View the Transaction queue changes’ item in the collection. Examine that the
transaction number 4 has moved into position 1 and all other transactions eval order has moved
accordingly.

Task 3 – Commit a Transaction

1. Click the ‘Step 11: Commit the Transaction’ item in the collection. Examine the request type, URI and
JSON body. We will PATCH our transaction resource and change the value of the ‘state’ attribute to
submit the transaction:

2. Click the ‘Send’ button and examine the response.

3. Verify the config was created using TMUI or REST requests.

34

Warning: When sending the Header X-F5-REST-Coordination-Id, the system assumes you want
to add an entry in the transaction queue. You MUST remove this header if you want to issue transaction
queue changes (like deleting an entry from the queue, changing the order, commiting a transaction). If
you don’t remove the header in that specific case, the system will send a 400 with the following type of
error: “message”: “Transaction XXXXX operation is not allowed to be added to transaction.”

4.2 Module 2 – iWorkflow

In this module we will explore how to use F5’s iWorkflow platform to further abstract application services
and deliver those services to tenants. iWorkflow has two main purposes in the Automation & Orchestration
toolchain:

• Provide simplified but customizable Device Onboarding workflows

• Provide a tenant/provider interface for L4 – L7 service delivery

When moving to an iWorkflow based toolchain it’s important to understand that L1-3 Automation (Device
Onboarding, Networking, etc) and L4-7 (Deployment of Virtual Servers, Pools, etc) are separated and
delivered by different features.

L1-3 Networking and Device Onboarding are delivered by ‘Cloud Connectors’ that are specific to the third
party technology ecosystem (e.g. vCMP, AWS, Cisco APIC, VMware NSX, BIG-IP, etc).

L4-7 service delivery is accomplished by:

• Declarative: Consuming F5 iApp templates from BIG-IP devices and creating a Service Catalog.

• Imperative: Consuming the iWorkflow REST Proxy to drive API calls to BIG-IP devices

The labs in the module will focus on the high level features in place to achieve full L1-7 automation. As
mentioned above, iApps are a key component of this toolchain. For our purposes we will use the f5.http
iApp to create simple examples. For more advanced use cases it’s often required to use a ‘Declarative’ or
‘Deployment-centric’ iApp template. A supported template of this nature called the App Services Integration
iApp is available at https://github.com/F5Networks/f5-application-services-integration-iApp for this purpose.

4.2.1 Lab 2.1 – iWorkflow Authentication

iWorkflow supports the same authentication mechanisms as BIG-IP (HTTP BASIC, Token Based Auth). In
this lab we will quickly review TBA on iWorkflow.

Task 1 – Token Based Authentication

In this task we will demonstrate TBA using the local authentication database, however, authentication to
external providers is fully supported.

For more information about external authentication providers see the section titled “About external au-
thentication providers with iControl REST” in the iControl REST API User Guide available at https:
//devcentral.f5.com

Perform the following steps to complete this task:

1. Click the ‘Step 1: Get Authentication Token’ item in the Lab 2.1 Postman Collection

35

https://github.com/F5Networks/f5-application-services-integration-iApp
https://devcentral.f5.com
https://devcentral.f5.com

2. Notice that we are sending a POST request to the /mgmt/shared/authn/login endpoint.

3. Click the ‘Body’ tab and examine the JSON that we will send to iWorkflow to provide credentials:

4. Modify the JSON body and add the required credentials (admin/admin). Then click the ‘Send’ button.

5. Examine the response status code. If authentication succeeded and a token was generated the
response will have a 200 OK status code. If the status code is 401 then check your credentials:

Successful:

•

Unsuccessful:

•

6. Once you receive a 200 OK status code examine the response body. The various attributes show the
parameters assigned to the particular token. Find the ‘token’ attribute and copy it into your clipboard
(Ctrl+c) for use in the next step:

36

7. Click the ‘Step 2: Verify Authentication Works’ item in the Lab 2.1 Postman collection. Click the
‘Headers’ tab and paste the token value copied above as the VALUE for the X-F5-Auth-Token
header. This header is required to be sent on all requests when using token based authentication.

8. Click the ‘Send’ button. If you’re request is successful you should see a ‘200 OK’ status and a listing
of the ‘ltm’ Organizing Collection.

9. We will now update your Postman environment to use this auth token for the remainder of the lab.
Click the Environment menu in the top right of the Postman window and click ‘Manage Environments’:

10. Click the ‘INTRO – Automation & Orchestration Lab’ item:

11. Update the value for ‘iwf_auth_token’ by Pasting (Ctrl-v) in your auth token:

37

12. Click the ‘Update’ button and then close the ‘Manage Environments’ window. You’re subsequent
requests will now automatically include the token.

13. Click the ‘Step 3: Set Authentication Token Timeout’ item in the Lab 1.2 Postman collection. This
request will PATCH your token Resource (check the URI) and update the timeout attribute so we can
complete the lab easily. Examine the request type and JSON Body and then click the ‘Send’ button.
Verify that the timeout has been changed to ‘36000’ in the response:

4.2.2 Lab 2.2 – Discover BIG-IP Devices

In order for iWorkflow to interact with a BIG-IP device it must be discovered by iWorkflow. The device
discovery process leverages the existing CMI Device Trust infrastructure on BIG-IP. Currently there is a
limitation that a single BIG-IP device can only be ‘discovered’ by ONE of iWorkflow or BIG-IQ CM at a time.
In this lab will we discover the existing BIG-IP devices from your lab environment.

Task 1 – Discover BIG-IP Devices

Perform the following steps to complete this task:

1. Expand the “Lab 2.2: Discover & License BIG-IP Devices” folder in the Postman collection

2. Open a Google Chrome window/tab to your iWorkflow device (https://10.1.1.6) and login with default
credentials (admin/admin). You can use this window to monitor actions while they are being performed
in Postman. Find the ‘Devices’ pane and make if viewable if it isn’t already.

3. Click the “Step 1: Discover BIGIP-A Device” item in the Postman collection. This
will request will perform a POST to the /mgmt/shared/resolver/device-groups/

38

https://10.1.1.6

cm-cloud-managed-devices/devices worker to perform the device discovery process. Examine
the JSON body so you understand what data is sent to perform the discovery process:

4. Click the ‘Send’ button. Examine the response and monitor the iWorkflow Chrome window you opened
previously.

5. Copy the ‘uuid’ attribute for BIGIP-A and populate the ‘iwf_bigip_a_uuid’ Postman environment vari-
able with the value:

39

6. Click the “Step 2: Discover BIGIP-B Device” item in the collection.

7. Click the “Step 3: Get Discovered Devices” item in the collection. We will GET the devices collection
and verify that both BIG-IP devices show a ‘state’ of ‘ACTIVE’:

4.2.3 Lab 2.3 – Create Tenant & BIG-IP Connector

iWorkflow implements a Tenant/Provider interface to enable abstracted deployment of L4-7 into various en-
vironment. In conjuction iWorkflow Connectors serve as the L1-3 Network and Device Onboarding automa-
tion component in the automation toolchain. iWorkflow supports Connectors for various vendor integrations
(F5 vCMP, F5 BIG-IP, Cisco APIC, vmWare NSX, etc.) In this lab we will create a ‘BIG-IP Connector’ for
the BIG-IP devices in the lab deployment. This connector will then allow you to drive a fully automated
deployment from the iWorkflow Service Catalog.

Task 1 – Create a Tenant and Tenant User

In this task we will create a Local Connector that is linked to our BIG-IP devices. The Local Cloud Con-
nector is DSC aware and will automatically detect that the BIG-IP devices are clustered and configure itself
accordingly.

Perform the following steps to complete this task:

1. Expand the “Lab 2.3 – Create Tenant & Local Connector” folder in the Postman collection.

40

2. Click the “Step 1: Create iWorkflow Tenant” item in the collection and click ‘Send’. This request will
create a tenant name MyTenant.

3. Click the “Step 2: Create Tenant User” item in the collection and click ‘Send’. This request will create
a tenant user.

4. Click the “Step 3: Assign User to Tenant Admin Role” item in the collection and click ‘Send’. This
request will assign the Admin role for the MyTenant tenant to the tenant user.

Task 2 - Create a Local Connector

1. Click the “Step 4: Create a Local Connector” item in the collection. We will create a new connector by
performing a POST to the local connector collection. If you examine the JSON body you can see we
are providing a reference to the URL for the BIG-IP-A device (using the UUID environment variable
we populated earlier):

2. Click the ‘Send’ button to create the connector.

3. Click the “Step 5: Get Local Connectors” item in the collection and click ‘Send’. Examine the output
to see how the connector was configured. Take note of the reference to the ‘device-group’. This is
how the connector determines the HA state of the underlying BIG-IP devices. Find the ‘connectorId’
of the connector and update your Postman environment to include the ‘connectorId’ as the value of
the ‘iwf_connector_uuid’ variable:

41

4. Click the “Step 6: Assign Connector to Tenant” item in the collection. This request will assign this
connector to to the ‘MyTenant’ tenant allowing service deployments from that tenant. Click the ‘Send’
button and examine the response.

4.2.4 Lab 2.4 – Deploy L4-7 Services

To drive iApp automation-based L4-7 deployments, iWorkflow includes the capability to create a Tenant
Service Catalog via L4 – L7 Service Templates. This model of deployment enables Declarative automation
of F5 L4-7 services provided the underlying iApp templates are designed with a declarative presentation
layer in mind. To demonstrate this capability we will create a simple Service Catalog Template and deploy
and application from a tenant on our BIG-IP devices using the App Services iApp.

Task 1 - Install the App Services iApp on iWorkflow

iWorkflow serves as the Source-of-Truth for iApp templates. As a result iApp templates that will be used
to automate deployments on BIG-IP must be installed on iWorkflow first. Once installed, iWorkflow will
automatically determine when a template needs to be installed on BIG-IP and perform the needed actions.

Note: iApp template installation on BIG-IP devices occurs during the first service deployment to a device.

To assist in deployment of the App Services iApp template and it’s associated sample service templates
a Postman collection has been created. We will first import the collection into Postman and then use it to
install the template into iWorkflow.

Perform the following steps to complete this task:

1. Import the following collection URL using ‘Import’ -> ‘Import from Link’:

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/
ondemand/postman_collections/AppSvcs_iApp_Workflows.postman_collection.
json

2. Expand the AppSvcs_iApp_Workflows collection. Then open the 2_Install_on_iWorkflow
folder and click the Install AppSvcs Template on iWorkflow item.

42

https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/AppSvcs_iApp_Workflows.postman_collection.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/AppSvcs_iApp_Workflows.postman_collection.json
https://raw.githubusercontent.com/f5devcentral/f5-automation-labs/ondemand/postman_collections/AppSvcs_iApp_Workflows.postman_collection.json

3. You can examine the Body of this request, however, understand that it contains the minified code that
comprises the iApp and will not be very readable. This collection uses the underlying variables that
have already been set (iwf_mgmt and iwf_auth_token) to make installation simple.

4. Click the ‘Send’ button to install the iApp.

Task 2 – Create the f5-http-lb L4–7 Service Template

An L4-7 Service Deployment on iWorkflow is driven by the creation of an L4 – L7 Service Template. These
templates allow a provider (administrator) to specify the values of specific fields from an origin iApp pre-
sentation layer. Additionally, the provider also defines the tenant interface to the service by marking which
fields are ‘Tenant Editable’ and therefore visible during service deployment from the tenant. You can think
of a Service Catalog Template and a filter that allows the vast majority of fields to be filled in or defaulted
while only exposing the minimal set of fields required to deploy a service.

In this task we will create a Service Catalog Template that utilizes the App Services iApp you just installed.

Perform the following steps to complete this task:

1. Expand the 3_iWorkflow_Service_Templates_Examples folder of the
AppSvcs_iApp_Workflows collection

2. Click the “f5-http-lb Template” item in the collection. This request is pre-built and will create a new
Service Template using the App Services iApp. Click the ‘Send’ button to create the template.

3. Open a Chrome tab to iWorkflow (https://10.1.1.6) and login with admin/admin credentials. Expand
the ‘Service Templates’ pane and double-click the “f5-http-lb” template. Notice various defaults have
been populated (e.g. port ‘80’ for the pool__port variable) and some fields have been marked as
‘Tenant Editable’:

43

https://10.1.1.6

Task 2 – Tenant L4-7 Service Deployment

In this task we will perform CRUD operations based on a deployment of the Service Catalog Template
created in the previous task.

Perform the following steps to complete this task:

1. Open a new Chrome tab to iWorkflow (https://10.1.1.6) and login with the credentials Username:
tenant, Password: tenant. Expand the ‘L4-L7 Services’ pane.

2. Switch back to F5 Automation & Orchestration Intro Postman Collection and click the “Step 1: Create
TENANT Service Deployment” item in Lab 2.4. Examine the URL and JSON body. We will be creating
a new Tenant Service Deployment under ‘MyTenant’ with the properties marked as ‘Tenant Editable’
provided:

3. Click the ‘Send’ button to create the Service Deployment. Examine the response. The iWorkflow GUI
in your Chrome tab will also reflect a new item in the Services pane:

44

https://10.1.1.6

4. Open a Chrome tab to BIGIP-A. Click on iApps -> Application Services -> Applications -> example-f5-
http-lb to view the config that was deployed on BIG-IP:

5. Go back to Postman and click the “Step 2: Get TENANT Service Deployment” item in the collection
and click ‘Send’. This item is example of a GET of the service definition. The response should match
what you see in the iWorkflow GUI when viewing the properties of a deployment.

6. Click the “Step 3: Modify TENANT Service Deployment” item in the collection. This request is an
example of an Update operation. Notice that we are sending a PUT request to the URL representing
the service deployment. Examine the JSON body and note that in the ‘pool__Members’ table there
is an additional pool member with an IP of 10.1.10.12 that will be added. Click the ‘Send’ button to
re-deploy the service:

45

7. Verify that the pool member was added on BIG-IP:

8. Go back to Postman and click the “Step 4: Delete TENANT Service Deployment” item. This item
will send a DELETE request to the URL for the service deployment. Click ‘Send’ and verify that the
deployment has been removed in the iWorkflow and BIG-IP GUIs.

4.2.5 Lab 2.5 – iWorkflow REST Proxy

In order to enable Imperative automation use cases, iWorkflow includes a REST proxy that allows pass-
through of REST requests to devices managed by iWorkflow. The REST proxy feature allows customers to
simplify automation by:

• Providing a centralized API endpoint for BIG-IP infrastructure

46

– No need to communicate with individual BIG-IP devices, only with iWorkflow

• Simplified authentication

– Strong authentication can be implemented at iWorkflow rather than on each BIG-IP

• Simplified RBAC

– RBAC can be implemented at iWorkflow for all devices rather on individual devices in the envi-
ronment

The rest proxy works by passing data sent to a specific URL through to the BIG-IP device. The root URL
for a particular devices REST proxy is:

/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices/devices/
<device_uuid>/rest-proxy/

Any URL segments included after .../rest-proxy/ are forwarded unaltered to the BIG-IP device. Query
parameters (e.g. ?expandSubcollections=true) are also passed unaltered along with the request type
and request body.

Task 1 – Perform REST operations via the REST Proxy

In this task we will perform a sample CRUD operation utilizing the REST Proxy. The intent of this task is to
show the basic mechanism use to perform these tasks. Simply changing the URL to include the iWorkflow
REST Proxy root for that device could easily change all the Imperative operations we have completed in
this lab to use the REST Proxy.

Perform the following steps to complete this task:

1. Expand the “Lab 2.5 – iWorkflow REST Proxy” folder in the Postman collection.

2. Click the “Step 1: Create pool on BIGIP-A”. Examine the request type, URL and JSON body. Essen-
tially we are performing a POST to the ‘/mgmt/tm/ltm/pool’ collection on BIGIP-A. The last part of the
URL includes this URI path (the part after ‘. . . ./rest-proxy/’). The JSON body and all other parameters
are passed unaltered. Also, notice that we are still using our iWorkflow Token to authenticate, not the
BIG-IP one.

3. Click the “Send” button and examine the response.

4. Complete steps 2-5 for the remaining items in the “Lab 2.5 – iWorkflow REST Proxy” collection.
Examine each request carefully so you understand what is happening.

4.3 Module 3 – f5-super-netops-container Toolkit

In this module we will explore how to use the f5-super-netops container toolkit to easily consume various
F5 Automation, Orchestration Super Netops and DevOps tools and frameworks.

47

The f5-super-netops-container is meant to provide a simple way for users to quickly duplicate a standard
automation and orchestration environment in your local machine/lab environment. The container is contin-
uously updated to include the latest tools and documentation.

The labs in this module will show you how to install the f5-super-netops-container image, start it in your
local environment and access various tools and documentation.

To install the f5-super-netops-container you need to be sure your system support running Docker Commu-
nity Edition (CE). Please refer to https://docs.docker.com/engine/installation/#platform-support-matrix for
more information.

This toolkit is fully open source and is on GitHub at https://github.com/f5devcentral/
f5-super-netops-container

4.3.1 Lab 3.1 – Install Docker Community Edition (CE)

To use the f5-super-netops-container you first need to install Docker Community Edition on your system.

Note: If you are using an F5 provided lab environment, Docker CE has already been installed on the host
named ‘Docker Server’. Please SSH to that host a execute all docker commands there.

Task 1 – Install Docker CE

Please follow the instructions at https://docs.docker.com/engine/installation/ to install Docker CE.

Once you have completed installed and successfully run the hello-world test you can continue to the
next lab.

To test your setup with the hello-world container, you just need to run the following command

docker run hello-world

Example output:

$ sudo docker run --rm hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
78445dd45222: Pull complete
Digest: sha256:c5515758d4c5e1e838e9cd307f6c6a0d620b5e07e6f927b07d05f6d12a1ac8d7
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
1. The Docker client contacted the Docker daemon.
2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.
4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

48

https://docs.docker.com/engine/installation/#platform-support-matrix
https://github.com/f5devcentral/f5-super-netops-container
https://github.com/f5devcentral/f5-super-netops-container
https://docs.docker.com/engine/installation/

https://cloud.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/engine/userguide/

Note: The --rm option will delete the container as soon as it stops running.

If you see this message: Cannot connect to the Docker daemon. Is the docker daemon running on this
host? , it is likely that you don’t have enough privileges with your user, try to use sudo when executing
docker commands.

If you want to remove the hello-world container, you can run the command sudo docker rmi
hello-world If your container is running, you cannot remove the image. You can issue the following
commands in that case (this will stop ALL your container instances): sudo docker stop $(docker ps
-aq)

4.3.2 Lab 3.2 – Obtain & Start the f5-super-netops-container Image

In this lab we will use the docker cli tools to obtain and start the f5-super-netops-container image.

Task 1 – Obtain the container image

Perform the following steps to complete this task:

1. Open a Command Prompt

Note: If you are using an F5 provided lab environment please SSH to the ‘Docker Server’ host and
execute the following commands.

2. Execute docker pull f5devcentral/f5-super-netops-container:base

Example output:

$ docker pull f5devcentral/f5-super-netops-container:base
base: Pulling from f5devcentral/f5-super-netops-container
cfc728c1c558: Pull complete
d87c258a5fa6: Pull complete
c65d1b487eef: Pull complete
8dbc9686aafd: Pull complete
8780a91a51b1: Pull complete
adf738b585dc: Pull complete
03b3481bc590: Pull complete
8fc57fb32b1a: Pull complete
8f73f7c22240: Pull complete
7d94bd4c05e6: Pull complete
a0b407bf28b5: Pull complete
b97bd4f3c99d: Pull complete
f37519ea449c: Pull complete
Digest: sha256:20f501b4c46948d3e69ffd7793cbbf08ac18da5f89c6665f36af10bc7c2a89b4
Status: Downloaded newer image for f5devcentral/f5-super-netops-container:base

3. Execute docker images

49

Example output:

$ docker images
REPOSITORY TAG IMAGE ID
→˓CREATED SIZE
f5devcentral/f5-super-netops-container base 7712f3d38f6b
→˓7 days ago 206 MB

Task 2 – Start the container image

To start the container we will execute the command:

docker run -p 8080:80 -p 2222:22 -it f5devcentral/f5-super-netops-container:base

The -p option publishes a L4 port from the container to the host. For example the -p 8080:80 option will
redirect port 8080 on the host system to port 80 in the container.

The -it option will make the session interactive and allocate a pseudo-TTY

The f5devcentral/f5-super-netops-container:base option is the name associated with the im-
age we obtained in Task 1.

Perform the following steps to complete this task:

1. Execute docker run -p 8080:80 -p 2222:22 -it f5devcentral/
f5-super-netops-container:base

Note: The image requires Internet connectivity to download the latest versions of tools and docu-
mentation. Please ensure you have proper connectivity from your host prior to starting the image. If
you need to use a proxy please refer to the documentation at https://docs.docker.com

The image will now start and load resources from the Internet. This process may take a while depend-
ing on the speed of your connection. When the startup process is complete you will be presented with
a root user prompt. You can interact with the image with standard Linux commands. In the next lab
we will connect to the image via SSH and HTTP.

Example startup output:

$ docker run -p 8080:80 -p 2222:22 -it f5devcentral/f5-super-netops-container:base
[s6-init] making user provided files available at /var/run/s6/etc...exited 0.
[s6-init] ensuring user provided files have correct perms...exited 0.
[fix-attrs.d] applying ownership & permissions fixes...
[fix-attrs.d] done.
[cont-init.d] executing container initialization scripts...
[cont-init.d] done.
[services.d] starting services
[services.d] done.
Reticulating splines...
Becoming self-aware...
[cloneGitRepos] Retrieving repository list from https://github.com/f5devcentral/
→˓f5-super-netops-container.git#master
[updateRepos] Processing /tmp/snops-repo/images/base/fs/etc/snopsrepo.d/base.json
[updateRepos] Processing /tmp/user_repos.json
[cloneGitRepos] Loading repositories from /home/snops/repos.json
[cloneGitRepos] Found 5 repositories to clone...
[cloneGitRepos][1/5] Cloning f5-sphinx-theme#master from https://github.com/
→˓f5devcentral/f5-sphinx-theme.git
[cloneGitRepos][1/5] Installing f5-sphinx-theme#master

50

https://docs.docker.com

[cloneGitRepos][2/5] Cloning f5-super-netops-container#master from https://github.
→˓com/f5devcentral/f5-super-netops-container.git
[cloneGitRepos][2/5] Installing f5-super-netops-container#master
[cloneGitRepos][3/5] Cloning f5-application-services-integration-iApp#develop
→˓from https://github.com/F5Networks/f5-application-services-integration-iApp.git
[cloneGitRepos][3/5] Installing f5-application-services-integration-iApp#develop
[cloneGitRepos][4/5] Cloning f5-postman-workflows#develop from https://github.com/
→˓0xHiteshPatel/f5-postman-workflows.git
[cloneGitRepos][4/5] Installing f5-postman-workflows#develop
[cloneGitRepos][5/5] Cloning f5-automation-labs#master from https://github.com/
→˓f5devcentral/f5-automation-labs.git
[cloneGitRepos][5/5] Installing f5-automation-labs#master

.----------.
/ /

/ ______.'
.. / /_

.' .._/ '''--.
| ' '___ `.

__| |__ `'. |
|__ __|) |

| |-' /
| | \ _..'`
| | '------'''
| | _
|_| | |

___ _ _ _ __ ___ _ __ _ __ ___| |_ ___ _ __ ___
/ __| | | | '_ \ / _ \ '__| ______ | '_ \ / _ \ __/ _ \| '_ \/ __|
__ \ |_| | |_) | __/ | |______|| | | | __/ || (_) | |_) __ \
|___/__,_| .__/ ___|_| |_| |_|___|_____/| .__/|___/

| | | |
|_| |_|

Welcome to the f5-super-netops-container. This image has the following
services running:

SSH tcp/22
HTTP tcp/80

To access these services you may need to remap ports on your host to the
local container using the command:

docker run -p 8080:80 -p 2222:22 -it f5devcentral/f5-super-netops-container:base

From the HOST perspective, this results in:

localhost:2222 -> f5-super-netops-container:22
localhost:8080 -> f5-super-netops-container:80

You can then connect using the following:

HTTP: http://localhost:8080
SSH: ssh -p 2222 snops@localhost

Default Credentials:

snops/default
root/default

51

Go forth and automate!

(you can now detach by using Ctrl+p+q)

[root@f5-super-netops] [/] #

Task 3 - Detach/Re-attach the Container

When running containers it’s important to understand that it will exit if the foreground process (in this case
the shell) exits. For example, if you typed the exit command in the running container it will shutdown.
In order to avoid this you should detach from the container once it has completed booting. You can still
perform functions by using SSH to access the container as explained in the next lab.

Detach the Container

1. Enter Ctrl+p+q in the running TTY.

Example output:

[root@f5-super-netops] [/] #
[root@f5-super-netops] [/] #
[root@f5-super-netops] [/] # <enter Ctrl+p+q>
hostname:~ user$

2. Verify the container is still running by entering docker ps

Example output:

hostname:~ user$ docker ps
CONTAINER ID IMAGE COMMAND
→˓ CREATED STATUS PORTS
→˓ NAMES
b8c86fe5c7f1 f5devcentral/f5-super-netops-container:base "/init /
→˓snopsboot/..." 2 minutes ago Up 2 minutes 0.0.0.0:2222->22/tcp,
→˓0.0.0.0:8080->80/tcp keen_ritchie

Re-attach the Container

1. Execute docker ps

Example output:

hostname:~ user$ docker ps
CONTAINER ID IMAGE COMMAND
→˓ CREATED STATUS PORTS
→˓ NAMES
b8c86fe5c7f1 f5devcentral/f5-super-netops-container:base "/init /
→˓snopsboot/..." 2 minutes ago Up 2 minutes 0.0.0.0:2222->22/tcp,
→˓0.0.0.0:8080->80/tcp keen_ritchie
|------------|
^- YOUR CONTAINER ID

2. Copy the value under the CONTAINER ID column that correspond to the f5devcentral/f5-super-
netops-container:base image.

52

3. Execute docker attach <container_id>

4. You may have to hit <Enter> to display the command prompt

5. Detach the container again by entering <Ctrl+p+q>

4.3.3 Lab 3.3 – Connect to f5-super-netops-container

In the previous lab we started the container image and were presented with a root command prompt. In
order to support use the container and its associated tools properly you connect via SSH and/or HTTP.

Task 1 – Connect via SSH

To connect to the image via SSH we must use the published port specified in the docker run command.
To review, the command used to start the container was:

docker run -p 8080:80 -p 2222:22 -it f5devcentral/f5-super-netops-container:base

This will publish the standard SSH service on TCP/22 to TCP/2222 on the Docker host. In the case of the
SSH service the following mapping applies:

localhost:2222 -> f5-super-netops-container:22

Note: If you are using an F5 provided lab environment please use the SSH client and connect to the
‘f5-super-netops-container SSH’ item

Additionally the container includes the snops user with a password of default. To connect to the container
execute the following command or it’s OS-specific equivalent:

ssh -p 2222 snops@localhost

Note: The host SSH keys are regenerated each time the container boots. As a result you may receive an
error when trying to connect indicating the host key has changed. This error is safe to ignore in this case
and can be resolved by removing the key from ~/.ssh/known_hosts. You can also configure your local
SSH config by adding the following to ~/.ssh/config:

Host localhost
Port 2222
StrictHostKeyChecking no
UserKnownHostsFile /dev/null

Example output:

$ ssh -p 2222 snops@localhost
Warning: Permanently added '[localhost]:2222' (ECDSA) to the list of known hosts.
snops@localhost's password:

.----------.
/ /
/ ______.'

.. / /_
.' .._/ '''--.
| ' '___ `.

__| |__ `'. |
|__ __|) |

53

| |-' /
| | \ _..'`
| | '------'''
| | _
|_| | |

___ _ _ _ __ ___ _ __ _ __ ___| |_ ___ _ __ ___
/ __| | | | '_ \ / _ \ '__| ______ | '_ \ / _ \ __/ _ \| '_ \/ __|
__ \ |_| | |_) | __/ | |______|| | | | __/ || (_) | |_) __ \
|___/__,_| .__/ ___|_| |_| |_|___|_____/| .__/|___/

| | | |
|_| |_|

Welcome to the f5-super-netops-container. This image has the following
services running:

SSH tcp/22
HTTP tcp/80

To access these services you may need to remap ports on your host to the
local container using the command:

docker run -p 8080:80 -p 2222:22 -it f5devcentral/f5-super-netops-container:base

From the HOST perspective, this results in:

localhost:2222 -> f5-super-netops-container:22
localho st:8080 -> f5-super-netops-container:80

You can then connect using the following:

HTTP: http://localhost:8080
SSH: ssh -p 2222 snops@localhost

Default Credentials:

snops/default
root/default

Go forth and automate!
[snops@f5-super-netops] [~] $

Task 2 – Connect via HTTP

To connect to the image via HTTP we must use the published port specified in the docker run command.
To review the command used to start the container was:

docker run -p 8080:80 -p 2222:22 -it f5devcentral/f5-super-netops-container:base

This will publish the standard HTTP service on TCP/80 to TCP/8080 on the Docker host. In the case of
the HTTP service the following mapping applies:

localhost:8080 -> f5-super-netops-container:80

Note: If you are using an F5 provided lab environment please use the browser and click the ‘Super Netops
Container’ bookmark.

54

To connect via HTTP open a web browser and enter the URL:

http://localhost:8080/start

You should see a page like this:

4.4 Module 4 – f5-postman-workflows & f5-newman-wrapper

In the previous modules you may have found the tasks associated with checking various response val-
ues and populating environment variables very tedious. In addition to being tedious these tasks are not
fundamentally automatable due to the requirement for human interaction.

In order to assist users with automating the F5 BIG-IP platform we have developed a set of tools that can
be used with the Postman REST Client (http://getpostman.com). The purpose of the tools are:

• f5-postman-workflows

– Provide re-usable JavaScript functions that ease testing of API responses and populating envi-
ronment variables

– Implement a delay-based polling mechanism

• f5-newman-wrapper

– Allow users to easily assemble Postman collections into workflows

– Enabled integration with third-party tools such as Ansible, Chef & Puppet

The framework allows collection developers to create automable collections that include full testing of re-
sponse values, population of environment variables to establish chains of requests and time-based polling
to allow long-lived API processes time to complete.

Users can then interact with these collections via the Postman GUI client, run the collections with the
Postman Runner or the Newman CLI client.

This lab module will walk you through using the tools. If you are interested in developing collections us-
ing the f5-postman-workflows framework please visit the official GitHub repository at https://github.com/
0xHiteshPatel/f5-postman-workflows

55

http://getpostman.com
https://github.com/0xHiteshPatel/f5-postman-workflows
https://github.com/0xHiteshPatel/f5-postman-workflows

4.4.1 Lab 4.1 – Install the f5-postman-workflows Framework

In this lab you will walk through installing the f5-postman-workflows framework into the Postman REST
Client.

Task 1 - Import the f5-postman-workflows Postman Collection

In this task you will import a Postman collection that contains installation helpers, Examples and a auto-
mated test framework. The collection is installed from the f5-postman-workflows GitHub repository.

Perform the following steps to complete this task:

1. Open the Postman Client on your jumphost by clicking the icon

2. Click the ‘Import’ button in the top left of the Postman window

3. Click the ‘Import from Link’ tab. Paste the following URL into the text box and click ‘Import’

https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/
master/F5_Postman_Workflows.postman_collection.json

4. You should now see a collection named ‘F5_Postman_Workflows’ in your Postman Collections sidebar

Task 2 - Install f5-postman-workflows into your Postman Client

To utilize the helper functions the framework include we must install those functions into the Postman Client.
The installation helpers perform the following tasks:

1. Determine the most current version of the framework

2. Dynamically minify the JavaScript code from the f5-postman-workflows GitHub repository using
Google’s Closure Compiler

3. Install the minified JS code into a Postman Global Variable

4. Set a number of Global variables that allow you to configure various options

To install the framework complete the following tasks:

1. Open the F5_Postman_Workflows collection

2. Open the Install folder

3. Select the Check f5-postman-workflows Version item and click ‘Send’

4. Examine the ‘Tests’ portion of the RESPONSE:

56

5. Select the Install/Upgrade f5-postman-workflows item and click ‘Send’

6. Examine the ‘Tests’ again and ensure that Installation was successful:

7. Click the ‘Eye’ button in the top right of the Postman window and examine the Global variables that
have been populated

57

The f5-postman-workflows framework is now installed in your Postman client.

4.4.2 Lab 4.2 – Manually Execute a Workflow

In this lab we will walk through how to obtain two collections that use the f5-postman-workflows framework
and execute a simple workflow using the Postman GUI client. The f5-postman-workflows GitHub repository
is continually updated with new collections that can be used as is, or customized, to automate the F5
platform. Additionally the f5-super-netops-container automatically downloads these and other tools so users
can rapidly execute workflows in their environments.

58

Postman collections also serve as a reference example of how various tasks can be accomplished using
an Imperative process. When executing a collection you are actually providing a Declarative input to an
Imperative process.

Collections are self-documenting and we will explore how to access the included documentation to assem-
ble a workflow from start to end. In the next lab we will use this base knowledge to create workflows as
JSON templates that can be executed by the f5-newman-wrapper on the f5-super-netops-container image
(or any system that has Newman installed)

Task 1 - Import and Explore BIG-IP Collections

We will import two collections to Postman using the same steps in the previous labs. The collections will
allow us to perform REST API Authentication to BIG-IP devices and then execute Operational actions on
the BIG-IP device.

Execute the following steps to complete this task:

1. Click Import -> Import from Link and import these collection URLs:

• https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/
master/collections/BIG_IP/BIGIP_API_Authentication.postman_collection.
json

• https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/
master/collections/BIG_IP/BIGIP_Operational_Workflows.
postman_collection.json

2. You should now have two additional Collections in the sidebar:

• BIGIP_API_Authentication

• BIGIP_Operational_Workflows

3. Expand the BIGIP_API_Authentication collection. Within the collection you will see one folder
named 1_Authenticate. Folders are used to organize various workflows within a collection. In this
case this collection performs exactly one task, authetication, therefore one folder is present.

4. Expand the 1_Authenticate folder. Notice there are three requests in the folder. These three
requests will be executed in a synchronous manner (one-after-another).

5. Click the ... icon on the 1_Authenticate folder, then click Edit

59

6. In the following window you will see documentation explaining what the requests in this folder accom-
plish. Additionally you will see a series of Input and Output variables. Unless marked otherwise it is
assumed that all Input variables are required. In this case the bigip_token_timeout variable is
optional.

Folders may also contain output variables that are set to pass data between requests in different
collections. In this case the output variable is named bigip_token and contains the authentication
token that can be sent in the X-F5-Auth-Token HTTP header to perform authentication.

7. Close the window by clicking ‘Cancel’

8. Repeat the steps above and explore the BIGIP_Operational_Workflows collection, specifically
the 4A_Get_BIGIP_Version folder.

Task 2 - Manually Chain Folders into a Workflow

In this task we will explore how to chain two folders together and manually execute a workflow. This example
is simple, but should help illustrate how we can use folders as building blocks that can be assembled or
chained together to construct a workflow.

We will use the 1_Authenticate folder in the BIGIP_API_Authentication collec-
tion and then pass the authentication token to the 4A_Get_BIGIP_Version folder in the
BIGIP_Operational_Workflows collection.

Execute the following steps to complete this task:

1. Create a new Postman environment by clicking the Gear icon -> Manage Environments -> Add.

2. Name the environment Lab 4.2 and populate the following key/value pairs:

• bigip_mgmt: 10.1.1.4

• bigip_username: admin

• bigip_password: admin

3. Click the ‘Add’ button, then close the ‘Manage Environments’ window.

60

4. Select the Lab 4.2 environment:

The preceeding steps configured the Input Variables required for all the folders that comprise our workflow.
We will now manually execute all the requests in the folders.

1. Expand the BIGIP_API_Authentication -> 1_Authenticate folder.

2. Select the Authenticate and Obtain Token item and click Send

3. Examine the Tests in the response portion of the request. All the tests should be passing. Addition-
ally you should see a test similar to:

[Populate Variable] bigip_token=....

These Tests items and there corresponding actions (populating a variable in this case) are generated
by the f5-postman-workflows framework.

4. Examine your Postman Environment variables and confirm that the bigip_token variable is present
and populated.

61

5. Select the Verify Authentication Works request in the folder and click ‘Send’. Examine the
Tests and ensure they are all passing

6. Select the Set Authentication Token Timeout request, click Send and verify all Tests pass.

At this point we have successfully authenticated to our device and stored the authentication token in the
bigip_token environment variable. We will now execute a request in a different collection and folder that
uses the bigip_token variable value to autheticate and perform it’s actions.

1. Expand the BIGIP_Operational_Workflows -> 4A_Get_BIGIP_Version folder.

2. Click the Get Software Version request.

3. Click the ‘Headers’ tab. Notice that the value for the X-F5-Auth-Token header is populated with the
bigip_token variable value.

Note: Postman uses the {{variable_name}} syntax to perform variable value substitution.

62

4. Click ‘Send’ to send the request. Examine the Tests and ensure all tests have passed.

5. Examine your environment variables and note that the bigip_version and bigip_build variables
are now populated.

While the example above was simple it should show how we can chain together different collections and
folders to assemble custom workflows. The key concepts to understand are:

• The f5-postman-workflows framework and collection test code perform unit tests on the response data
and verify the request executed successfully.

• The framework also populates Output Variables as documented so they can be used in subsequent
requests as Inputs to assemble a workflow

Next, we will explore how to use this base knowledge to assemble various collections and folders into
workflows using Newman and the f5-newman-wrapper.

4.4.3 Lab 4.3 – f5-newman-wrapper Introduction

As shown in the previous lab we can manually execute collections and folders using the Postman GUI to
achieve some end result on BIG-IP devices. While this capability is important in a test/prototyping phase
we need to ensure we can execute these manual steps as an automated process.

To acheive this goal we can use the f5-newman-wrapper tool. This tool allows a user to specify a workflow
in a JSON formatted file that includes Input Variables, the collections and folders to execute and various
output options to provide feedback and run details in a programmatic fashion.

The core element of a workflow that can be executed by f5-newman-wrapper is a JSON formatted input file.
In this lab we will introduce the file format.

Task 1 - Explore the workflow JSON format

To introduce the format of the workflow file we will use an example that recreates the simple workflow we
executed manually in the previous lab. We will explore the file in sections followed by showing the whole
file.

63

Define Name and Description

1 {
2 "name":"Wrapper_Demo_1",
3 "description":"Execute a chained workflow that authenticates to a BIG-IP and

→˓retrieves it's software version"
4 }

Define Global Settings for the Run

This section defines how f5-newman-wrapper will run this workflow. The attrbutes are explained in the table
below.

1 {
2 "globalEnvVars":"../framework/f5-postman-workflows.postman_globals.json",
3 "globalOptions": {
4 "insecure":true,
5 "reporters":["cli"]
6 },
7 "saveEnvVars":true,
8 "outputFile":"Wrapper_Demo_1-run.json",
9 "envOutputFile":"Wrapper_Demo_1-env.json"

10 }

Attribute Description
globalEnvVars This is the file that contains the Global environment variables used by Newman.

This file is generated by the f5-postman-workflows build scripts and contains the
same global variables as we saw in the previous lab that installed the framework
into the Postman GUI client

globalOptions Specify the global options for newman. Available options are documented at: https:
//github.com/postmanlabs/newman#api-reference

Note: Removing the cli option from the reporters array will disable verbose
CLI output

saveEnvVars Save the environment variables at the end of the run to a file
outputFile The file to save the run details to.
envOutputFile The file to save the environment variables at the end of the run to.

Define Input Variables

This section specifies the Input Variables for the workflow. The name globalVars conveys that the vari-
ables defined here will be present for each request in the defined workflow (the global scope from a workflow
perspective). Variables can also be defined within each item in a workflow (the local scope from a item per-
spective). In the case of a global and local variable that is named identically, the local scope variable will
take precendence.

1 {
2 "globalVars": {
3 "bigip_mgmt": "10.1.1.4",

64

https://github.com/postmanlabs/newman#api-reference
https://github.com/postmanlabs/newman#api-reference

4 "bigip_username":"admin",
5 "bigip_password":"admin"
6 }
7 }

Define the Workflow Collections and Ordering

This section defines the workflow and collections and folders that it is comprised of. The workflow attribute
is an ordered array that contains objects defining each collecion and folder to run.

1 {
2 "workflow": [
3 {
4 "name":"Authenticate to BIG-IP",
5 "options": {
6 "collection":".. /collections/BIG_IP/BIGIP_API_Authentication.postman_

→˓collection.json",
7 "folder":"1_Authenticate"
8 }
9 },

10 {
11 "name":"Get BIG-IP Software Version",
12 "options": {
13 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.

→˓postman_collection.json",
14 "folder":"4A_Get_BIGIP_Version"
15 }
16 }
17]
18 }

Lets look at the item in the workflow that performs authentication:

1 {
2 "name":"Authenticate to BIG-IP",
3 "options": {
4 "collection":".. /collections/BIG_IP/BIGIP_API_

→˓Authentication.postman_collection.json",
5 "folder":"1_Authenticate"
6 }
7 }

The name attribute specifies the name for this item. The options object specifies the parameters used
to execute this particular item. In our case the collection attribute refers to the file containing the
BIGIP_API_Authentication collection. The folder attribute specifies the name of the folder to run in
the collection.

By default all output variables from a collection or folder are passed to the next item in the workflow. This
allows us to chain collections together as needed to build workflows.

Final Workflow JSON

1 {
2 "name":"Wrapper_Demo_1",

65

3 "description":"Execute a chained workflow that authenticates to a BIG-IP
→˓and retrieves it's software version",

4 "globalEnvVars":"../framework/f5-postman-workflows.postman_globals.json",
5 "globalOptions": {
6 "insecure":true,
7 "reporters":["cli"]
8 },
9 "globalVars": {

10 "bigip_mgmt": "10.1.1.4",
11 "bigip_username":"admin",
12 "bigip_password":"admin"
13 },
14 "saveEnvVars":true,
15 "outputFile":"Wrapper_Demo_1-run.json",
16 "envOutputFile":"Wrapper_Demo_1-env.json",
17 "workflow": [
18 {
19 "name":"Authenticate to BIG-IP",
20 "options": {
21 "collection":".. /collections/BIG_IP/BIGIP_API_

→˓Authentication. postman_collection.json",
22 "folder":"1_Authenticate"
23 }
24 },
25 {
26 "name":"Get BIG-IP Software Version",
27 "skip":false,
28 "options": {
29 "collection":".. /collections/BIG_IP/BIGIP_

→˓Operational_Workflows. postman_collection.json",
30 "folder":"4A_Get_BIGIP_Version"
31 }
32 }
33]
34 }

4.4.4 Lab 4.4 – Run a workflow with f5-newman-wrapper

In this lab we will use the f5-super-netops-container to run the workflow we reviewed in the previous lab.
The advantage of using the f5-super-netops Container is that all the tools, collections and frameworks are
pre-installed and ready to use.

Task 1 - Run a f5-newman-wrapper Workflow

1. Open an SSH session as described in the previous lab

2. Run cd f5-postman-workflows/local

3. Run cp ../workflows/Wrapper_Demo_1.json .

4. Edit the Wrapper_Demo_1.json file with vim and enter the 10.1.1.4 for the value of the
bigip_mgmt variable

"globalVars": {
"bigip_mgmt": "10.1.1.4",
"bigip_username":"admin",

66

"bigip_password":"admin"
},

5. Run f5-newman-wrapper Wrapper_Demo_1.json

6. Examine the output to see how the workflow was executed. Notice that the same tests that we saw
when using Postman are present during this run.

Example output:

[snops@f5-super-netops] [~/f5-postman-workflows/local] $ f5-newman-wrapper
→˓Wrapper_Demo_1.json
[Wrapper_Demo_1-2017-03-30-04-08-12] starting run
[Wrapper_Demo_1-2017-03-30-04-08-12] [runCollection][Authenticate to BIG-IP]
→˓running...
newman

BIGIP_API_Authentication

? 1_Authenticate
? Authenticate and Obtain Token
POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 108ms]
X [POST Response Code]=200
X [Populate Variable] bigip_token=WYKIVPHCNASNVEC55ZDVNH5OO2

? Verify Authentication Works
GET https://10.1.1.4/mgmt/shared/authz/tokens/WYKIVPHCNASNVEC55ZDVNH5OO2 [200

→˓OK, 1.23KB, 8ms]
X [GET Response Code]=200
X [Current Value] token=WYKIVPHCNASNVEC55ZDVNH5OO2
X [Check Value] token == WYKIVPHCNASNVEC55ZDVNH5OO2

? Set Authentication Token Timeout
PATCH https://10.1.1.4/mgmt/shared/authz/tokens/WYKIVPHCNASNVEC55ZDVNH5OO2 [200

→˓OK, 1.23KB, 14ms]
X [PATCH Response Code]=200
X [Current Value] timeout=1200
X [Check Value] timeout == 1200

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 3 | 0 |
?-----------------?-------?-------?
| test-scripts | 3 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 1 | 0 |
?-----------------?-------?-------?
| assertions | 8 | 0 |
?-----------------?-------?-------?
| total run duration: 297ms |
?-------------------------------?
| total data received: 1.71KB (approx) |
?-------------------------------?
| average response time: 43ms |
?-------------------------------?
[Wrapper_Demo_1-2017-03-30-04-08-12] [runCollection][Get BIG-IP Software Version]
→˓running...

67

newman

BIGIP_Operational_Workflows

? 4A_Get_BIGIP_Version
? Get Software Version
GET https://10.1.1.4/mgmt/tm/sys/software/volume [200 OK, 1.32KB, 16ms]
X [GET Response Code]=200
X [Populate Variable] bigip_version=12.1.1
X [Populate Variable] bigip_build=1.0.196

[Wrapper_Demo_1-2017-03-30-04-08-12] run completed

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 1 | 0 |
?-----------------?-------?-------?
| test-scripts | 1 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 0 | 0 |
?-----------------?-------?-------?
| assertions | 3 | 0 |
?-----------------?-------?-------?
| total run duration: 58ms |
?-------------------------------?
| total data received: 611B (approx) |
?-------------------------------?
| average response time: 16ms |
?-------------------------------?

7. Examine the environment variables that were saved at the end of the run by executing cat
Wrapper_Demo_1-env.json

Example output:

1 {
2 "id": "c0550892-36d4-4412-bf35-a1d9aa8d2efe",
3 "values": [
4 {
5 "type": "any",
6 "value": "10.1.1.4",
7 "key": "bigip_mgmt"
8 },
9 {

10 "type": "any",
11 "value": "admin",
12 "key": "bigip_username"
13 },
14 {
15 "type": "any",
16 "value": "admin",
17 "key": "bigip_password"
18 },
19 {
20 "type": "any",
21 "value": "WYKIVPHCNASNVEC55ZDVNH5OO2",

68

22 "key": "bigip_token"
23 },
24 {
25 "type": "any",
26 "value": "1200",
27 "key": "bigip_token_timeout"
28 },
29 {
30 "type": "any",
31 "value": "12.1.1",
32 "key": "bigip_version"
33 },
34 {
35 "type": "any",
36 "value": "1.0.196",
37 "key": "bigip_build"
38 }
39]
40 }

Notice that the bigip_version and bigip_build variables were saved. This file is JSON formatted and
can easily be used directly by other tools to drive further automation.

4.4.5 Lab 4.5 – Building Complex Workflows

In the previous lab we reviewed and ran a very simple workflow. To support more complex use cases
f5-newman-wrapper includes features to help build more complex workflows.

These features allow users to:

• Create infinately nested items

• Rename/remap variables name pre and post run of an item

• Load variables from a saved environment file

• Define variables in the global (workflow) or local (item) scope

To explore all the available options currently implemented please refer to https://raw.githubusercontent.com/
0xHiteshPatel/f5-postman-workflows/master/framework/f5-newman-wrapper/workflow-schema.json

Task 1 - Explore Nested Workflows & Variable Remapping

By using the ‘children’ array within an item in a workflow you can create nested items. In this task, we will
create a more advanced version of the workflow we used in the previous lab. This workflow will perform
authentication to two BIG-IP devices and then retrieve the software version running on each.

We will implement a workflow that is best depicted by the following branch diagram:

Start
|
|- Authenticate
| |- Authenticate to BIG-IP A
| |- Authenticate to BIG-IP B
|
|- Get BIGIP Version
| |- Get BIGIP Version on BIG-IP A
| |- Get BIGIP Version on BIG-IP B

69

https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/master/framework/f5-newman-wrapper/workflow-schema.json
https://raw.githubusercontent.com/0xHiteshPatel/f5-postman-workflows/master/framework/f5-newman-wrapper/workflow-schema.json

|
Stop

To implement this workflow we need to consider how Input Variables are passed to each item in the work-
flow. Previously, we saw that the following variables are required to the the 1_Authenticate folder in the
BIGIP_API_Authentication collection:

• bigip_mgmt

• bigip_username

• bigip_password

The issue we encounter when building this workflow is that we, at a minimum, have different values for
bigip_mgmt because we are trying to communicate with two BIG-IP devices. To address this issue, we
could define our input variables as follows:

• bigip_a_mgmt = 10.1.1.4

• bigip_b_mgmt = 10.1.1.5

• bigip_username = admin

• bigip_password = admin

This solves the problem of providing both BIG-IP management addresses, however, it introduces an-
other issue. The 1_Authenticate folder requires that the management IP address be passed in the
bigip_mgmt input variable. To solve this issue, we will use variable name remapping to remap a globalVar
to a different name before the 1_Authenticate folder is run for each BIG-IP device. To illustrate this, we
will add more information to our diagram:

Start
|
|- Define globalVars
| |- bigip_a_mgmt = 10.1.1.4
| |- bigip_b_mgmt = 10.1.1.5
| |- bigip_username = admin
| |- bigip_password = admin
|
|- Authenticate
| |- Authenticate to BIG-IP A
| | | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| |
| |- Authenticate to BIG-IP B
| | | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
|
|- Get BIGIP Version
| |- Get BIGIP Version on BIG-IP A
| |- Get BIGIP Version on BIG-IP B
|

Stop

We’ve now addressed our issues regarding defining and passing the BIG-IP management address, but
have to consider one last problem. The output variable of the 1_Authenticate folder is bigip_token.
By default f5-newman-wrapper will store all output variables from one folder and automatically pass them to
the next item. In this case, an issue occurs because the Authenticate to BIG-IP B item will overwrite
the bigip_token variable that was outputted by the Authenticate to BIG-IP A item. To resolve this

70

issue, we can remap variables AFTER or post-run of an item. We can modify our diagram to handle this
issue like this:

Start
|
|- Define globalVars
| |- bigip_a_mgmt = 10.1.1.4
| |- bigip_b_mgmt = 10.1.1.5
| |- bigip_username = admin
| |- bigip_password = admin
|
|- Authenticate
| |- Authenticate to BIG-IP A
| | | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| | | Post-run: Remap bigip_token -> bigip_a_token
| |
| |- Authenticate to BIG-IP B
| | | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| | | Post-run: Remap bigip_token -> bigip_b_token
|
|- Get BIGIP Version
| |- Get BIGIP Version on BIG-IP A
| |- Get BIGIP Version on BIG-IP B
|

Stop

The last step is to perform some additional pre-run remaping to pass the correct token to the
4A_Get_BIGIP_Version folder to get our BIG-IP software version. Additionally, we will perform some
post-run remaps so we can save the output variables for each device:

Start
|
|- Define globalVars
| |- bigip_a_mgmt = 10.1.1.4
| |- bigip_b_mgmt = 10.1.1.5
| |- bigip_username = admin
| |- bigip_password = admin
|
|- Authenticate
| |- Authenticate to BIG-IP A
| | | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| | | Post-run: Remap bigip_token -> bigip_a_token
| |
| |- Authenticate to BIG-IP B
| | | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | | Run: 1_Authenticate folder
| | | Post-run: Remap bigip_token -> bigip_b_token
|
|- Get BIGIP Version
| |- Get BIGIP Version on BIG-IP A
| | | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | | Pre-run: Remap bigip_a_token -> bigip_token
| | | Run: 4A_Get_BIGIP_Version folder
| | | Post-run: Remap bigip_version -> bigip_a_version
| | | Post-run: Remap bigip_build -> bigip_a_build

71

| |
| |- Get BIGIP Version on BIG-IP B
| | | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | Pre-run: Remap bigip_b_token -> bigip_token
| | Run: 4A_Get_BIGIP_Version folder
| | Post-run: Remap bigip_version -> bigip_b_version
| | Post-run: Remap bigip_build -> bigip_b_build
|
|- Save globarVars to file
|

Stop

Note: Collections and folders that are designed to act on multiple devices are designed to automatically
use the bigip_a_... and bigip_b_... syntax to avoid having to remap variables. In this case the
BIGIP_Operational_Workflows collection is designed to perform actions on one device at a time, thus
the need for remapping of the bigip_token input variables.

Note: Another option that is available to solve this issue is to define all variables in the local scope for each
item. This method is not preferred because it decreases portability and increases complexity in definition of
input variables.

Task 2 - Build Complex Workflow JSON

Define Global Settings & Variables:

1 {
2 "name":"Wrapper_Demo_2",
3 "description":"Execute a chained workflow that authenticates to two BIG-IPs and

→˓retrieves their software version",
4 "globalEnvVars":"../framework/f5-postman-workflows.postman_globals.json",
5 "globalOptions": {
6 "insecure":true,
7 "reporters":["cli"]
8 },
9 "globalVars": {

10 "bigip_a_mgmt": "10.1.1.4",
11 "bigip_b_mgmt": "10.1.1.5",
12 "bigip_username":"admin",
13 "bigip_password":"admin"
14 },
15 "saveEnvVars":true,
16 "outputFile":"Wrapper_Demo_2-run.json",
17 "envOutputFile":"Wrapper_Demo_2-env.json"
18 }

Define Authentication Items

Note: As shown below, we can use the skip: true attribute to signal f5-newman-wrapper to not run
that particular item. The items children will still be processed. The skip attribute can be used to create

72

a container for similar requests.

1 {
2 "workflow": [
3 {
4 "name":"Authenticate to BIG-IPs",
5 "skip":true,
6 "children": [
7 {
8 "name":"Authenticate to BIG-IP A",
9 "options": {

10 "collection":"../collections/BIG_IP/BIGIP_API_Authentication.postman_
→˓collection.json",

11 "remapPreRun": {
12 "bigip_a_mgmt": "bigip_mgmt"
13 },
14 "folder":"1_Authenticate",
15 "remapPostRun": {
16 "bigip_token": "bigip_a_token"
17 }
18 }
19 },
20 {
21 "name":"Authenticate to BIG-IP B",
22 "options": {
23 "collection":"../collections/BIG_IP/BIGIP_API_Authentication.postman_

→˓collection.json",
24 "remapPreRun": {
25 "bigip_b_mgmt": "bigip_mgmt"
26 },
27 "folder":"1_Authenticate",
28 "remapPostRun": {
29 "bigip_token": "bigip_b_token"
30 }
31 }
32 }
33]
34 }
35]
36 }

The JSON above implements the following part of our branch diagram:

|- Authenticate
|- Authenticate to BIG-IP A
| | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | Run: 1_Authenticate folder
| | Post-run: Remap bigip_token -> bigip_a_token
|
|- Run: Authenticate to BIG-IP B
| | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt
| | Run: 1_Authenticate folder
| | Post-run: Remap bigip_token -> bigip_b_token

Specifically, note the use of the skip attribute on line 5 to create a container to group the items together.

73

Define Get Software Version Items

1 {
2 "workflow": [
3 {
4 "name":"Get BIG-IP Software Versions",
5 "skip":true,
6 "children": [
7 {
8 "name":"Get BIG-IP A Software Version",
9 "options": {

10 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.postman_
→˓collection.json",

11 "remapPreRun": {
12 "bigip_a_mgmt": "bigip_mgmt",
13 "bigip_a_token": "bigip_token"
14 },
15 "folder":"4A_Get_BIGIP_Version",
16 "remapPostRun": {
17 "bigip_version": "bigip_a_version",
18 "bigip_build": "bigip_a_build"
19 }
20 }
21 },
22 {
23 "name":"Get BIG-IP B Software Version",
24 "options": {
25 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.postman_

→˓collection.json",
26 "remapPreRun": {
27 "bigip_b_mgmt": "bigip_mgmt",
28 "bigip_b_token": "bigip_token"
29 },
30 "folder":"4A_Get_BIGIP_Version",
31 "remapPostRun": {
32 "bigip_version": "bigip_b_version",
33 "bigip_build": "bigip_b_build"
34 }
35 }
36 }
37]
38 }
39]
40 }

The JSON above implements the following part of our branch diagram:

|- Get BIGIP Version
|- Get BIGIP Version on BIG-IP A
| | Pre-run: Remap bigip_a_mgmt -> bigip_mgmt
| | Pre-run: Remap bigip_a_token -> bigip_token
| | Run: 4A_Get_BIGIP_Version folder
| | Post-run: Remap bigip_version -> bigip_a_version
| | Post-run: Remap bigip_build -> bigip_a_build
|
|- Get BIGIP Version on BIG-IP B
| | Pre-run: Remap bigip_b_mgmt -> bigip_mgmt

| Pre-run: Remap bigip_b_token -> bigip_token

74

| Run: 4A_Get_BIGIP_Version folder
| Post-run: Remap bigip_version -> bigip_b_version
| Post-run: Remap bigip_build -> bigip_b_build

Final Workflow JSON

1 {
2 "name":"Wrapper_Demo_2",
3 "description":"Execute a chained workflow that authenticates to two BIG-IPs and

→˓retrieves their software version",
4 "globalEnvVars":"../framework/f5-postman-workflows.postman_globals.json",
5 "globalOptions": {
6 "insecure":true,
7 "reporters":["cli"]
8 },
9 "globalVars": {

10 "bigip_a_mgmt": "",
11 "bigip_b_mgmt": "",
12 "bigip_username":"admin",
13 "bigip_password":"admin"
14 },
15 "saveEnvVars":true,
16 "outputFile":"Wrapper_Demo_2-run.json",
17 "envOutputFile":"Wrapper_Demo_2-env.json",
18 "workflow": [
19 {
20 "name":"Authenticate to BIG-IPs",
21 "skip":true,
22 "children": [
23 {
24 "name":"Authenticate to BIG-IP A",
25 "options": {
26 "collection":"../collections/BIG_IP/BIGIP_API_Authentication.postman_

→˓collection.json",
27 "remapPreRun": {
28 "bigip_a_mgmt": "bigip_mgmt"
29 },
30 "folder":"1_Authenticate",
31 "remapPostRun": {
32 "bigip_token": "bigip_a_token"
33 }
34 }
35 },
36 {
37 "name":"Authenticate to BIG-IP B",
38 "options": {
39 "collection":"../collections/BIG_IP/BIGIP_API_Authentication.postman_

→˓collection.json",
40 "remapPreRun": {
41 "bigip_b_mgmt": "bigip_mgmt"
42 },
43 "folder":"1_Authenticate",
44 "remapPostRun": {
45 "bigip_token": "bigip_b_token"
46 }
47 }

75

48 }
49]
50 },
51 {
52 "name":"Get BIG-IP Software Versions",
53 "skip":true,
54 "children": [
55 {
56 "name":"Get BIG-IP A Software Version",
57 "options": {
58 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.postman_

→˓collection.json",
59 "remapPreRun": {
60 "bigip_a_mgmt": "bigip_mgmt",
61 "bigip_a_token": "bigip_token"
62 },
63 "folder":"4A_Get_BIGIP_Version",
64 "remapPostRun": {
65 "bigip_version": "bigip_a_version",
66 "bigip_build": "bigip_a_build"
67 }
68 }
69 },
70 {
71 "name":"Get BIG-IP B Software Version",
72 "options": {
73 "collection":"../collections/BIG_IP/BIGIP_Operational_Workflows.postman_

→˓collection.json",
74 "remapPreRun": {
75 "bigip_b_mgmt": "bigip_mgmt",
76 "bigip_b_token": "bigip_token"
77 },
78 "folder":"4A_Get_BIGIP_Version",
79 "remapPostRun": {
80 "bigip_version": "bigip_b_version",
81 "bigip_build": "bigip_b_build"
82 }
83 }
84 }
85]
86 }
87]
88 }

Task 3 - Run the Workflow

1. Open an SSH session as described in the previous lab

2. Run cd f5-postman-workflows/local

3. Run cp ../workflows/Wrapper_Demo_2.json .

4. Edit the Wrapper_Demo_2.json file and enter you BIG-IP managment addresses

1 {
2 "globalVars": {
3 "bigip_a_mgmt": "10.1.1.4",
4 "bigip_b_mgmt": "10.1.1.5",

76

5 "bigip_username":"admin",
6 "bigip_password":"admin"
7 }
8 }

5. Run f5-newman-wrapper Wrapper_Demo_2.json

6. Examine the output to see how the workflow was executed.

Example output:

[snops@f5-super-netops] [~/f5-postman-workflows/local] $ f5-newman-wrapper
→˓Wrapper_Demo_2.json
[Wrapper_Demo_2-2017-03-30-19-22-52] starting run
[Wrapper_Demo_2-2017-03-30-19-22-52] [runCollection][Authenticate to BIG-IP A]
→˓running...
newman

BIGIP_API_Authentication

? 1_Authenticate
? Authenticate and Obtain Token
POST https://10.1.1.4/mgmt/shared/authn/login [200 OK, 1.41KB, 570ms]
X [POST Response Code]=200
X [Populate Variable] bigip_token=UE7W5CXWM5SJ6SZEV5A7KTAI5Q

? Verify Authentication Works
GET https://10.1.1.4/mgmt/shared/authz/tokens/UE7W5CXWM5SJ6SZEV5A7KTAI5Q [200

→˓OK, 1.23KB, 9ms]
X [GET Response Code]=200
X [Current Value] token=UE7W5CXWM5SJ6SZEV5A7KTAI5Q
X [Check Value] token == UE7W5CXWM5SJ6SZEV5A7KTAI5Q

? Set Authentication Token Timeout
PATCH https://10.1.1.4/mgmt/shared/authz/tokens/UE7W5CXWM5SJ6SZEV5A7KTAI5Q [200

→˓OK, 1.23KB, 13ms]
X [PATCH Response Code]=200
X [Current Value] timeout=1200
X [Check Value] timeout == 1200

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 3 | 0 |
?-----------------?-------?-------?
| test-scripts | 3 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 1 | 0 |
?-----------------?-------?-------?
| assertions | 8 | 0 |
?-----------------?-------?-------?
| total run duration: 740ms |
?-------------------------------?
| total data received: 1.71KB (approx) |
?-------------------------------?
| average response time: 197ms |
?-------------------------------?

77

[Wrapper_Demo_2-2017-03-30-19-22-52] [runCollection][Authenticate to BIG-IP B]
→˓running...
newman

BIGIP_API_Authentication

? 1_Authenticate
? Authenticate and Obtain Token
POST https://10.1.1.5/mgmt/shared/authn/login [200 OK, 1.41KB, 350ms]
X [POST Response Code]=200
X [Populate Variable] bigip_token=ONQXOQPNCVOHZELKIFSPHETL3I

? Verify Authentication Works
GET https://10.1.1.5/mgmt/shared/authz/tokens/ONQXOQPNCVOHZELKIFSPHETL3I [200

→˓OK, 1.23KB, 9ms]
X [GET Response Code]=200
X [Current Value] token=ONQXOQPNCVOHZELKIFSPHETL3I
X [Check Value] token == ONQXOQPNCVOHZELKIFSPHETL3I

? Set Authentication Token Timeout
PATCH https://10.1.1.5/mgmt/shared/authz/tokens/ONQXOQPNCVOHZELKIFSPHETL3I [200

→˓OK, 1.23KB, 12ms]
X [PATCH Response Code]=200
X [Current Value] timeout=1200
X [Check Value] timeout == 1200

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 3 | 0 |
?-----------------?-------?-------?
| test-scripts | 3 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 1 | 0 |
?-----------------?-------?-------?
| assertions | 8 | 0 |
?-----------------?-------?-------?
| total run duration: 472ms |
?-------------------------------?
| total data received: 1.71KB (approx) |
?-------------------------------?
| average response time: 123ms |
?-------------------------------?
[Wrapper_Demo_2-2017-03-30-19-22-52] [runCollection][Get BIG-IP A Software
→˓Version] running...
newman

BIGIP_Operational_Workflows

? 4A_Get_BIGIP_Version
? Get Software Version
GET https://10.1.1.4/mgmt/tm/sys/software/volume [200 OK, 1.32KB, 207ms]
X [GET Response Code]=200
X [Populate Variable] bigip_version=12.1.1
X [Populate Variable] bigip_build=1.0.196

78

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 1 | 0 |
?-----------------?-------?-------?
| test-scripts | 1 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 0 | 0 |
?-----------------?-------?-------?
| assertions | 3 | 0 |
?-----------------?-------?-------?
| total run duration: 250ms |
?-------------------------------?
| total data received: 611B (approx) |
?-------------------------------?
| average response time: 207ms |
?-------------------------------?
[Wrapper_Demo_2-2017-03-30-19-22-52] [runCollection][Get BIG-IP B Software
→˓Version] running...
newman

BIGIP_Operational_Workflows

? 4A_Get_BIGIP_Version
? Get Software Version
GET https://10.1.1.5/mgmt/tm/sys/software/volume [200 OK, 1.32KB, 191ms]
X [GET Response Code]=200
X [Populate Variable] bigip_version=12.1.1
X [Populate Variable] bigip_build=1.0.196

?-----------------?-------?-------?
| | executed | failed |
?-----------------?-------?-------?
| iterations | 1 | 0 |
?-----------------?-------?-------?
| requests | 1 | 0 |
?-----------------?-------?-------?
| test-scripts | 1 | 0 |
?-----------------?-------?-------?
| prerequest-scripts | 0 | 0 |
?-----------------?-------?-------?
| assertions | 3 | 0 |
?-----------------?-------?-------?
| total run duration: 230ms |
?-------------------------------?
| total data received: 611B (approx) |
?-------------------------------?
| average response time: 191ms |
?-------------------------------?
[Wrapper_Demo_2-2017-03-30-19-22-52] run completed in 3s, 316.921 ms

7. Examine the environment variables that were saved at the end of the run by executing cat
Wrapper_Demo_2-env.json. The resulting BIG-IP software versions are now present and have
been highlighted below.

Example output:

79

1 {
2 "id": "d459e491-4936-4be7-a910-567f711a636a",
3 "values": [
4 {
5 "type": "any",
6 "value": "10.1.1.4",
7 "key": "bigip_a_mgmt"
8 },
9 {

10 "type": "any",
11 "value": "10.1.1.5",
12 "key": "bigip_b_mgmt"
13 },
14 {
15 "type": "any",
16 "value": "10.1.1.5",
17 "key": "bigip_mgmt"
18 },
19 {
20 "type": "any",
21 "value": "admin",
22 "key": "bigip_username"
23 },
24 {
25 "type": "any",
26 "value": "admin",
27 "key": "bigip_password"
28 },
29 {
30 "type": "any",
31 "value": "UE7W5CXWM5SJ6SZEV5A7KTAI5Q",
32 "key": "bigip_a_token"
33 },
34 {
35 "type": "any",
36 "value": "ONQXOQPNCVOHZELKIFSPHETL3I",
37 "key": "bigip_b_token"
38 },
39 {
40 "type": "any",
41 "value": "ONQXOQPNCVOHZELKIFSPHETL3I",
42 "key": "bigip_token"
43 },
44 {
45 "type": "any",
46 "value": "12.1.1",
47 "key": "bigip_a_version"
48 },
49 {
50 "type": "any",
51 "value": "1.0.196",
52 "key": "bigip_a_build"
53 },
54 {
55 "type": "any",
56 "value": "1200",
57 "key": "bigip_token_timeout"
58 },

80

59 {
60 "type": "any",
61 "value": "12.1.1",
62 "key": "bigip_b_version"
63 },
64 {
65 "type": "any",
66 "value": "1.0.196",
67 "key": "bigip_b_build"
68 }
69]
70 }

4.5 Module 5 - Python SDK

This module will cover the newly released F5 Python SDK. This SDK is released and maintained as a public
GitHub repository at https://github.com/F5Networks/f5-common-python

The goal of the Python SDK is to provide a simple interface that abstracts many of the F5-specific nuances
of the iControl REST API away from the user. As you learned in Module 1, when interacting directly with
the API, it’s often necessary to build out requests in a very manual fashion. In order to provide a simpler
interface, the SDK was developed to abstract away many of the eccentricities of the API and provide a
clean, Pythonic interface.

For example, when creating a pool in, an Imperative automation model, without the SDK you would be
required to do something like the following (this code is not complete):

import requests
import sys
base_url = “https://10.1.1.4/mgmt/tm/ltm/pool/”

pool_attributes = {
“name”: “test_pool”,
“partition”: “Common”,
“loadBalancingMode”: “least-connections-member”,
“minUpMembers”: 1

}

s = requests.session()
s.auth = (“admin”, “admin”)

resp = s.post(base_url, data=json.dumps(pool_attributes))

if resp.status_code != requests.codes.ok:
print “Error creating pool”

sys.exit(1)

When using the Python SDK the equivalent code is:

from f5.bigip import ManagementRoot

mgmt = ManagementRoot(“10.1.1.4”,”admin”,”admin”)

pool = mgmt.tm.ltm.pools.pool.create(partition=”Common”, name=”test_pool”)

81

https://github.com/F5Networks/f5-common-python

pool.loadBalancingMode = “least-connections-member”
pool.minUpMembers = 1

pool.update()

As you can see, the code utilizing the SDK is much more condensed and far easier to read. This is a result
of the SDK exposing abstracted methods to build the URL. Additionally the SDK creates standard CURDLE
(create, update, refresh, delete, load, exists) methods that behave correctly depending on REST object type
(Organizing Collection, Resource, etc.) you are interacting with (e.g., you cannot DELETE an Organizing
Collection, therefore a delete() method is not available).

Full documentation for the API exists at here

For the purpose of this lab, your Windows Jumphost has everything pre-installed, however, since the SDK
is a standard python package the process is trivial on any system (Windows, Linux, Mac, etc.) that has
Python installed.

It’s important to keep in mind, while going through this module, that we are only demonstrating what is
possible with the SDK from a high level. For example, the same scripts used in this module are designed
to run from the command line with arguments, however, they could easily be modified to use JSON files as
the input mechanism.

4.5.1 Lab 5.1 – create_pool.py

In this lab we will review, line-by-line an example script that has been created to allow creation of a BIG-IP
Pool with Pool Members directly from the command line.

Task 1 – Review create_pool.py

1. Open Notepad++ using the located in the Windows Taskbar.

2. Double click the file create_pool.py in the menu on the left side of the Notepad++ screen

3. We will now review the code line-by-line:

from f5.bigip import ManagementRoot
import pprint
import argparse
pp = pprint.PrettyPrinter(indent=3)

These lines import in various Python libraries. The first line imports the F5 Python SDK. The pprint and
argparse libraries are standard Python libraries that aid in print data to the console and parsing command
line arguments.

parser = argparse.ArgumentParser(description='Script to create a pool on a BIG-IP
→˓device')
parser.add_argument("host", help="The IP/Hostname of the BIG-IP device")
parser.add_argument("pool_name", help="The name of the pool")
parser.add_argument("pool_members", help="A comma seperated string in the format <IP>:
→˓<port>[,<IP>:<port>]")
parser.add_argument("-P", "--partition", help="The partition name", default="Common")
parser.add_argument("-u", "--username", help="The BIG-IP username", default="admin")
parser.add_argument("-p", "--password", help="The BIG-IP password", default="admin")
args = parser.parse_args()

82

https://f5-sdk.readthedocs.io

These lines setup the command line arguments for the script and store those arguments in a python dictio-
nary names ‘args’. The argparse library automatically generates help text, checks for required arguments,
sets defaults, etc.

mgmt = ManagementRoot(args.host, args.username, args.password)

This line creates a new Python object that refers to the BIG-IP device. We are calling the ManagementRoot
method with 3 arguments:

• The value of the host argument

• The value of the username argument

• The value of the password argument

This method automatically performs a test to ensure that we are able to reach the device and authenticate
successfully.

pool_path = "/%s/%s" % (args.partition, args.pool_name)

This line just stores the human-readable path to the pool name for later use

if mgmt.tm.ltm.pools.pool.exists(partition=args.partition, name=args.pool_name):
raise Exception("Pool '%s' already exists" % args.pool_name)

This if statement checks to see if a pool with the same name already exists on the specified partition on the
device. The return value of the exists() method is a Boolean value of True or False. In this case we want
the Exception to execute if a pool DOES exist and stop execution of the script.

pool = mgmt.tm.ltm.pools.pool.create(partition=args.partition, name=args.pool_name)
print "Created pool %s" % pool_path

The first line in this block actually creates the new pool. The partition and name of the pool are specified as
arguments to the create() method and the ‘pool’ variable represents an object that holds the created pool’s
properties. The second line simply prints a message that the pool has been created.

member_list = args.pool_members.split(',')

This line uses a built-in python method called split() to separate the value of the command line argument
into discrete strings using a ‘,’ as a separator. The return type of the split() is a python list (lists = arrays)

for member in member_list:
pool_member = pool.members_s.members.create(partition=args.partition, name=member)
print " Added member %s" % member

This for loop iterates over the elements in the list generated above and creates a new member in the pool.

Task 2 – Run create_pool.py

1. Open Console2 using the icon on the Windows Taskbar

2. The console window automatically opens in the Desktop\Module 5 – Python SDK directory

3. Type set PYTHONWARNINGS=ignore to disable the printing of SSL/TLS warnings about self-signed
certificates.

83

4. Type python create_pool.py and examine the help output:

5. Type python create_pool.py 10.1.1.4 test_pool 10.1.10.10:80,10.1.10.11:80 to
create a new pool:

6. Using Chrome open a tab to BIGIP-A (https://10.1.1.4). Examine the pool that was created.

4.5.2 Lab 5.2 – read_pool.py

In this lab we will review, line-by-line an example script that has been created to view the attributes of a
BIG-IP Pool directly from the command line.

Task 1 – Review read_pool.py

1. Open read_pool.py in Notepad++

2. We will review the code. For brevity we have removed lines that are common with previous examples:

if not mgmt.tm.ltm.pools.pool.exists(partition=args.partition, name=args.pool_name):
raise Exception("Pool '%s' does not exist" % args.pool_name)

This if statement checks to see if a pool with the same name exists in the specified partition on the device.
The key difference between this and the example in the previous lab is the inclusion of the ‘not’ keyword.
This inverses the logic of the statement so that the Exception is raised when the pool DOES NOT exist

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)

This line loads the configuration of the pool into a variable

print "Pool %s:" % pool_path
pp.pprint(pool.raw)

These lines print the human-readable pool path and then uses the PrettyPrint library to dump all the at-
tributes associated with the pool

Task 2 – Run read_pool.py

1. In the command prompt type python read_pool.py 10.1.1.4 test_pool and examine the
output:

84

https://10.1.1.4

2. Notice the various attributes that are associated with the pool. Take note of the value of the
loadBalancingMode attribute for the next lab

4.5.3 Lab 5.3 – update_pool.py

In this lab we will review, line-by-line an example script that has been created to allow updating any attribute
of a pool using the command-line. This script is a good example of creating generic tools that enable many
use cases. Rather than creating a script that just updates a specific attribute we created one that updates
ANY pool attribute, greatly expanding it’s potential use cases.

Task 1 – Review update_pool.py

1. Open update_pool.py in Notepad++

2. We will review the code. For brevity we have removed lines that are common with previous examples:

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)

pp.pprint("Current: %s=%s" % (args.attribute, getattr(pool, args.attribute)))

These lines load the pool from the device and print the current value of the attribute specified on the the
command line. The second line is a little bit tricky because the SDK dynamically populates the objects
attributes based on the type of object (pool, virtual server, etc.). Normally we could just use something like
‘pool.loadBalancingMode’ to get the current lb-method for the pool, however, since this script implements a
way to change ANY attribute in the object we have to dynamically substitute the attribute name at run-time.

85

To do this we use the getattr() python built-in function to resolve the mapping at runtime and return the value
of the attribute specified on the command line.

kwargs = {args.attribute: args.value}

This line creates a new python dictionary with one entry specifying a key-value pair using the command
line arguments. For example if you were updated the loadBalancingMode attribute to ‘least-connections-
member’ the dictionary would look like {“loadBalancingMode”:”least-connections-member”}

pool.update(**kwargs)

The first line updates the pool we loaded previously with the new value for the attribute. The **kwargs
argument to the update() method triggers a special mechanism in python called ‘keyword unpacking’ which
allows us to pass the attribute to be updated to the update() method.

pool.refresh()
pp.pprint("New: %s=%s" % (args.attribute, getattr(pool, args.attribute)))

The first line refreshes the data in the object from the BIG-IP device. The second line prints this refreshed
information to the console so the user can verify the update completed successfully.

Task 2 – Run update_pool.py

1. In the command prompt type python update_pool.py 10.1.1.4 test_pool
loadBalancingMode least-connections-member and examine the output:

2. You can manually verify the load balancing method was changed via TMUI or by re-running
read_pool.py (it’s not required since the line that prints the new value forces a refresh())

3. Experiment with changing other pool attributes

4.5.4 Lab 5.4 – update_pool_member_state.py

One of the most common tasks asked for by customers is the ability to set a pool member’s state via a
script. We have included an example of such a script in the lab that can be used to see how easy it is to
automate specific operational tasks.

Task 1 – Run update_pool_member_state.py

1. In the command prompt type python update_pool_member_state.py 10.1.1.4
test_pool 10.1.10.10:80 disabled and examine the output.

2. Verify the pool member was disabled via TMUI

3. Re-run the script with as python update_pool_member_state.py --help to see additional
options.

4. Re-enable the pool member using the script

86

4.5.5 Lab 5.5 – delete_pool.py

In this lab we will review, line-by-line an example script that has been created to allow deletion of a pool
using the command-line.

Task 1 – Review delete_pool.py

1. Open delete_pool.py in Notepad++

2. We will review the code. For brevity we have removed lines that are common with previous examples:

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)
pool.delete()

print "Deleted pool %s" % pool_path

These lines should be fairly self-explanatory at this point. First we load the pool and the we delete() it and
print that we have done so.

Task 2 – Run delete_pool.py

1. In the command prompt type python delete_pool.py 10.1.1.4 test_pool and examine the
output:

2. If desired verify the pool was deleted using TMUI or the read_pool.py script (it should return an
error)

4.5.6 Lab 5.6 – Create a Python Script

In this lab we will use the ‘Generate Code’ feature of Postman to create a python script from a collection of
requests.

Task 1 – Create a simple script

Note: Remember to have the correct environment selected in Postman

Perform the following steps to complete this task:

1. Expand the ‘Lab 5.6 – Create a Python Script’ folder in the Postman collection

2. Click the ‘Step 1 – Create a HTTP Monitor’ item in the collection

3. Click the ‘Code’ link in the Postman window:

87

4. Select Python -> Requests from the menu on the top right of the window:

5. Examine the Python code that was generated. Click the ‘Copy to Clipboard’ button

6. Open a new text file and paste the generated code. We need to modify the line that sends the request
to DISABLE SSL certificate verification. Find the following line:

response = requests.request("POST", url, data=payload, headers=headers)

And add a verify=False option to it:

response = requests.request("POST", url, data=payload, headers=headers,
→˓verify=False)

88

Save the file on your Desktop as lab5_6.py

7. Open a command prompt and run the script by typing python lab5_6.py:

8. Verify the monitor was created on BIG-IP

9. Delete the monitor to prepare for the next task

Task 2 – Chain together multiple requests

In this task we will repeat the process from Task 1 to chain together multiple requests.

Perform the following steps:

1. Repeat the procedure from Task 1 with each of the items in the ‘Lab 5.6’ postman collection. Append
each snippet of code to your existing script until you have all 5 requests in the script. You will need to
remove the duplicate ‘import requests’ lines and update each request with the ‘verify=False’
option.

2. Save the file

3. Run the script and verify the config was created.

4.5.7 Lab 5.7 – EXTRA CREDIT – Modify create_pool.py

This is an open-ended exercise. Copy create_pool.py to create_vs.py and modify it to create a
Virtual Server. You could also cheat and look at you_cheated.py!

4.5.8 Lab 5.8 – EXTRA CREDIT – Review super_pool.py

This is an open-ended exercise. Review and run the super_pool.py script. This script allows bulk
creation/deletion of pools using CSV files.

89

90

5
HOWTOs: Index

This section contains useful HOWTOs

5.1 HOWTO - Update Existing iApp templates to Work with iWorkflow
v2.1

This HOWTO document describes the minimal changes required to update an existing iApp template and
add a version number to the template name.

Adding the version number allows the iApp template to be used by iWorkflow v2.1 and later. Versioning is
required to enable iApp templates to be installed across many BIG-IP devices in a production-safe manner.

Without version information it is possible that iApp templates could be overwritten leading to deployment
failures and/or outages.

5.1.1 Task 1 – Export the existing iApp from BIG-IP

The iApp template can be exported from a BIG-IP system where it has been installed. The file has a .tmpl
extension and is a plaintext, readable format.

Complete the following steps:

1. Login to the BIG-IP GUI with admin credentials

2. Click iApps -> Templates

3. Find the desired template in the list and click the template name to open it

4. Scroll to the bottom of the page and click the ‘Export’ button

5. Click the Download: ... button and save the file to your computer

5.1.2 Task 2 - Edit the Exported template

We will now edit the template name to add a version number. iWorkflow currently supports the following
formats:

• template_name_v1.0_0

91

• template_name.v.1.0.0

• /<partition>/template_name.v1.0.0

Complete the following steps:

1. Open the previously saved .tmpl file in a text editor

2. Perform a text search for sys application template

Example:

1 cli admin-partitions {
2 update-partition Common
3 }
4

5 sys application template my_template_name {
6 actions {
7 definition {
8 implementation {

3. Modify the template name to include a version number using one of the formats specified at the
beginning of this task.

Example:

1 cli admin-partitions {
2 update-partition Common
3 }
4

5 sys application template my_template_name.v1.0.0 {
6 actions {
7 definition {
8 implementation {

4. Save the file

5.1.3 Task 3 - Import the iApp template to iWorkflow

The updated iApp template is now ready to be imported to iWorkflow. Instructions on how to do this can be
found at:

https://devcentral.f5.com/wiki/iWorkflow.iWorkflowOpsGuide_7.ashx

92

https://devcentral.f5.com/wiki/iWorkflow.iWorkflowOpsGuide_7.ashx

	Welcome
	Getting Started
	Lab Topology
	Class 1 - Introduction to Automation & Orchestration
	Module 1 – REST API Basics & Device Onboarding
	Module 2 – iWorkflow
	Module 3 – f5-super-netops-container Toolkit
	Module 4 – f5-postman-workflows & f5-newman-wrapper
	Module 5 - Python SDK

	HOWTOs: Index
	HOWTO - Update Existing iApp templates to Work with iWorkflow v2.1

