

F5 Automation & Orchestration - Introduction

Contents:

	Getting Started

	Lab Topology

	Module 1 – REST API Basics & Device Onboarding
	Lab 1.1 – Exploring the iControl REST API

	Lab 1.2 – REST API Authentication & ‘example’ Templates

	Lab 1.3 – Review/Set Device Settings

	Lab 1.4 – Basic Network Connectivity

	Lab 1.5 – Build a BIG-IP Cluster

	Lab 1.6 – Build a Basic LTM Config

	Lab 1.7 – REST API Transactions

	Module 2 – iWorkflow
	Lab 2.1 – iWorkflow Authentication

	Lab 2.2 – Discover BIG-IP Devices

	Lab 2.3 – Create Local Connector

	Lab 2.4 – Create an L4–7 Service Template & Deployment

	Lab 2.5 – iWorkflow REST Proxy

	Module 3 - Python SDK
	Lab 3.1 – create_pool.py

	Lab 3.2 – read_pool.py

	Lab 3.3 – update_pool.py

	Lab 3.4 – update_pool_member_state.py

	Lab 3.5 – delete_pool.py

	Lab 3.6 – Create a Python Script

	Lab 3.7 – EXTRA CREDIT – Modify create_pool.py

	Lab 3.8 – EXTRA CREDIT – Review super_pool.py

Getting Started

Please follow the instructions provided by the instructor to start your
lab and access your jump host.

Note

All work for this lab will be performed exclusively from the windows
jumphost. No installation or interaction with your local system is
required.

Lab Topology

The network topology implemented for this lab is very simple. Since the
focus of the lab is Control Plane programmability rather that Data Plane
traffic flow we can keep the data plane fairly simple. The following
components have been included in your lab environment:

	2 x F5 BIG-IP VE (v12.1)

	1 x F5 iWorkflow VE (v2.0.2)

	1 x Linux Webserver

	1 x Windows Jumphost

The following table lists VLANS, IP Addresses and Credentials for all
components:

	Component
	VLAN: IP Address(es)
	Credentials

	Windows Jumphost
	MGMT: 10.1.1.3

Internal: 10.1.10.250

External: 10.1.20.250

	user/user

	BIG IP A
	MGMT: 10.1.1.4

Internal: 10.1.10.1

External: 10.1.20.1

	root/default

admin/admin

	BIG-IP B
	MGMT: 10.1.1.5

Internal: 10.1.10.2

External: 10.1.20.2

	root/default

admin/admin

	iWorkflow
	MGMT: 10.1.1.6
	root/default

admin/admin

	Linux Webserver
	MGMT: 10.1.1.7

Internal: 10.1.10.10-13

	root/default

Module 1 – REST API Basics & Device Onboarding

In this module you will learn the basic concepts required to interact
with the BIG-IP iControl REST API. Additionally, you will walk through a
typical Device Onboarding workflow that results in a fully functional
BIG-IP Active/Standby pair. It’s important to note that this module will
focus on showing an Imperative approach to automation.

Note

The Lab Deployment for this lab includes two BIG-IP devices.
For most of the labs we will focus on configuring only the BIG-IP-A
device (management IP and licensing have already been completed).
BIG-IP-B already has some minimal configuration loaded. In a real-world
environment it would be necessary to perform Device Onboarding functions
on ALL BIG-IP devices. We are only performing them on a single device in
this lab so we are able to cover all topics in the time allotted.

Note

It’s beneficial to have GUI/SSH sessions open to BIG-IP and
iWorkflow devices while going through this lab. Feel free to verify the
actions taken in the lab against the GUI or SSH. You can also watch the
following logs:

	BIG-IP:
	/var/log/ltm

	/var/log/restjavad.0.log

	iWorkflow:
	/var/log/restjavad.0.log

	Lab 1.1 – Exploring the iControl REST API

	Lab 1.2 – REST API Authentication & ‘example’ Templates

	Lab 1.3 – Review/Set Device Settings

	Lab 1.4 – Basic Network Connectivity

	Lab 1.5 – Build a BIG-IP Cluster

	Lab 1.6 – Build a Basic LTM Config

	Lab 1.7 – REST API Transactions

Lab 1.1 – Exploring the iControl REST API

Task 1 – Explore the API using the TMOS Web Interface

In this lab we will explore the API using an interface that is built-in
to TMOS. This utility is useful for understanding how TMOS objects map
to the REST API. The interfaces implement full Create, Read, Update and
Delete (CRUD) functionality, however, in most practical use cases it’s
far easier to use this interface as a ‘Read’ tool rather than trying to
Create objects directly from it. It’s usually far easier to use TMUI or
TMSH to create the object as needed and then use this tool to view the
created object with all the correct attributes already populated.

	Open Google Chrome and navigate to the following bookmarks: BIG-IP
A GUI, BIG-IP B GUI and iWorkflow GUI. Bypass any SSL errors that
appear and ensure you see the login screen for each bookmark.

[image: image1]

	Navigate to the URL https://10.1.1.4/mgmt/toc (or click the BIG-IP A
REST TOC bookmark). The ‘/mgmt/toc’ path in the URL is available on
all TMOS versions 11.6 or newer.

	Authenticate to the interface using the default admin/admin
credentials.

	You will now be presented with a top-level list of various REST
resources. At the top of the page there is a search box
[image: image2]that can be used to find items on the page. Type ‘net’ in
the search box and then click on the ‘net’ link under iControl REST
Resources: [image: image3]

	Find the /mgmt/tm/net/route-domain Collection and click it.

	You will now see a listing of the Resources that are part of the
route-domain(s) collection. As you can see the default route domain
of ‘0’ is listed. You can also create new objects by clicking the
[image: image4] button. Additionally resources can be deleted using the
[image: image5] button or edited using the [image: image6] button.

	Click the ‘0’ resource to view the attributes of route-domain 0 on
the device:

[image: image7]

Take note of the full path to the resource. Here is how the path is
broken down:

/ mgmt / tm / net / route-domain / ~Common~0
| Root | OC | OC | Collection | Resource
*OC=Organizing Collection

Lab 1.2 – REST API Authentication & ‘example’ Templates

One of the many basic concepts related to interaction with REST API’s is
how a particular consumer is authenticated to the system. BIG-IP and
iWorkflow support two types of authentication: HTTP BASIC and Token
based. It’s important to understand both of these authentication
mechanisms, as consumers of the API will often make use of both types
depending on the use case. This lab will demonstrate how to interact
with both types of authentication.

Task 1 – HTTP BASIC Authentication

In this task we will use the Postman tool to send API requests using
HTTP BASIC authentication. As its name implies this method of
authentication encodes the user credentials via the existing BASIC
authentication method provided by the HTTP protocol. The mechanism this
method uses is to insert an HTTP header named ‘Authorization’ with a
value that is built by Base 64 encoding the string
<username>:<password>. The resulting header takes this form:

Authorization: Basic YWRtaW46YWRtaW4=

It should be noted that cracking the method of authentication is
TRIVIAL; as a result API calls should always be performed using HTTPS
(F5 default) rather than HTTP.

Perform the following steps to complete this task:

	Open the Postman tool by clicking the [image: image8] icon of the taskbar of
your Windows Jumphost

	To assist in multi-step procedures we make heavy use of the
‘Environments’ capability in Postman. This capability allows us to
set various global variables that are then substituted into a
request before it’s sent. When you open Postman please verify that
your environment is set the ‘INTRO - Automation & Orchestration
Lab’ environment:

[image: image9]

	Click the ‘Collections’ tab on the left side of the screen, expand
the ‘F5 Automation & Orchestration Intro’ collection on the left side
of the screen, expand the ‘Lab 1.2 – API Authentication’ folder:

[image: image10]

	Click the ‘Step 1: HTTP BASIC Authentication’ item. Click the
‘Authorization’ tab and select ‘Basic Auth’ as the Type. Fill in
the username and password (admin/admin) and click the ‘Update
Request’ button. Notice that the number of Headers in the Headers
tab changed from 1 to 2. This is because Postman automatically
created the HTTP header and updated your request to include it.
Click the ‘Headers’ tab and examine the HTTP header:
[image: image11]

	Click the ‘Send’ button to send the request. If the request succeeds
you should be presented with a listing of the /mgmt/tm/ltm
Organizing Collection.

	Update the credentials and specify an INCORRECT password. Send the
request again and examine the response:

[image: image12]

Task 2 – Token Based Authentication

One of the disadvantages of BASIC Authentication is that credentials are
sent with each and every request. This can result in a much greater
attack surface being exposed unnecessarily. As a result Token Based
Authentication (TBA) is preferred in many cases. This method only sends
the credentials once, on the first request. The system then responds
with a unique token for that session and the consumer then uses that
token for all subsequent requests. Both BIG-IP and iWorkflow support
token-based authentication that drops down to the underlying
authentication subsystems available in TMOS. As a result the system can
be configured to support external authentication providers (RADIUS,
TACACS, AD, etc) and those authentication methods can flow through to
the REST API. In this task we will demonstrate TBA using the local
authentication database, however, authentication to external providers
is fully supported.

For more information about external authentication providers see the
section titled “About external authentication providers with
iControl REST” in the iControl REST API User Guide available at
https://devcentral.f5.com

Perform the following steps to complete this task:

	Click the ‘Step 2: Get Authentication Token’ item in the Lab 1.2
Postman Collection

	Notice that we send a POST request to the
/mgmt/shared/authn/login endpoint:

[image: image13]

	Click the ‘Body’ tab and examine the JSON that we will send to
BIG-IP to provide credentials and the authentication provider:

[image: image14]

	Modify the JSON body and add the required credentials (admin/admin).
Then click the ‘Send’ button.

	Examine the response status code. If authentication succeeded and
a token was generated the response will have a 200 OK status code.
If the status code is 401 then check your credentials:

Successful:

	[image: image15]

Unsuccessful:

	[image: image16]

	Once you receive a 200 OK status code examine the response body.
The various attributes show the parameters assigned to the
particular token. Find the ‘token’ attribute and copy it into your
clipboard (Ctrl+c) for use in the next step:

[image: image17]

	Click the ‘Step 3: Verify Authentication Works’ item in the Lab
1.2 Postman collection. Click the ‘Headers’ tab and paste the
token value copied above as the VALUE for the X-F5-Auth-Token
header. This header is required to be sent on all requests when
using token based authentication.

[image: image18]

	Click the ‘Send’ button. If your request is successful you should
see a ‘200 OK’ status and a listing of the ltm Organizing
Collection.

	We will now update your Postman environment to use this auth token
for the remainder of the lab. Click the Environment menu in the
top right of the Postman window and click ‘Manage Environments’:

[image: image19]

	Click the ‘INTRO – Automation & Orchestration Lab’ item:

[image: image20]

	Update the value for big_ip_a_auth_token by Pasting (Ctrl-v)
in your auth token:

[image: image21]

	Click the ‘Update’ button and then close the ‘Manage Environments’
window. You’re subsequent requests will now automatically include
the token.

	Click the ‘Step 4: Set Authentication Token Timeout’ item in the
Lab 1.2 Postman collection. This request will PATCH your token
Resource (check the URI) and update the timeout attribute so we
can complete the lab easily. Examine the request type and JSON
Body and then click the ‘Send’ button. Verify that the timeout has
been changed to ‘36000’ in the response:

[image: image22]

Task 2 – Get a pool ‘example’ Template

In order to assist with REST API interactions you can request a template
of the various attributes of a Resource type in a Collection. This
template can then be used as the body of a POST, PUT or PATCH request as
needed.

Perform the following steps:

	Click the ‘Step 5: Get ‘example’ of a Pool Resource’ item in the Lab
1.2 Postman collection

	Examine the URI. Notice the addition of example at the end of the
collection name:

[image: image23]

	Click ‘Send’ and examine the FULL response. You will see
descriptions and then all the attributes for the Pool resource
type. The response also shows the default values for the attributes
if applicable:

[image: image24]

Lab 1.3 – Review/Set Device Settings

Your BIG-IP-A device is already licensed, so now we can focus on
configuring the basic infrastructure related settings to complete the
Device Onboarding process. The remaining items include (list not
exhaustive):

	Device Settings
	NTP/DNS Settings

	Remote Authentication

	Hostname

	Admin Credentials

	L1-3 Networking
	Physical Interface Settings

	L2 Connectivity (VLAN, VXLAN, etc.)

	L3 Connectivity (Self IPs, Routing, etc.)

	HA Settings
	Global Settings
	Config Sync IP

	Mirroring IP

	Failover Addresses

	CMI Device Trusts

	Device Groups

	Traffic Groups

	Floating Self IPs

We will specifically cover the items in BOLD above in the following
labs. It should be noted that many permutations of the Device Onboarding
process exist due to the nature of customer environments. This class is
designed to teach enough information so that you can then apply the
knowledge learned and help articulate and/or deliver a specific solution
for your environment.

Task 1 – Set Device Hostname & Disable GUI Setup Wizard

In this task we will modify the device hostname and disable the GUI
Setup Wizard. The Resource that contains these settings is
/mgmt/tm/sys/global-settings.

Perform the following steps to complete this task:

	Expand the “Lab 1.3 – Review/Set Device Settings” folder in the
Postman collection

	Click the “Step 1: Get System Global-Settings” item. Click the ‘Send’
button and review the response body to see what the current settings
on the device are.

	Click the “Step 2: Set System Global-Settings” item. This item uses
a PATCH request to the global-settings resource to modify the
attributes contained within it. We will update the guiSetup and
hostname attribute.
	Review the JSON body and modify the ‘hostname’ attribute to set the
hostname to bigip-a.f5se.local

	Also notice that we are disabling the GUI Setup Wizard as part of
the same request:
[image: image25]

	Click the ‘Send’ button and review the response body. You should see
that the attributes modified above have been updated. You can also
GET the global-settings again to verify they have been updated.

Task 2 – Modify DNS/NTP Settings

Much like the previous task we can update system DNS and NTP settings by
sending a PATCH request to the correct resource in the ‘sys’ Organizing
Collection. The relevant Resources for this task are:

	URL
	Type

	/mgmt/tm/sys/dns
	DNS Settings

	/mgmt/tm/sys/ntp
	NTP Settings

Perform the following steps to complete this task:

	Click the “Step 3: Get System DNS Settings” item in the collection.
Click ‘Send’ and review the current settings

	Click the “Step 4: Set System DNS Settings” item in the collection.
Review the JSON body to verify the name server IPs ‘4.2.2.2’ and ‘8.8.8.8’ are listed.
Additionally add a search domain of ‘f5se.local’. You will modify a
JSON array for both of these attributes. The format of a JSON array
is:
“myAttribute”: [“item1”,”item2”,”item3”]

	Click the ‘Send’ button and verify the requested changes were
successfully implemented

	Click the “Step 5: Get System NTP Settings” item in the collection.
Click ‘Send’ and review the current settings

	Click the “Step 6: Set System NTP Settings” item in the collection.
Review the JSON body to verify the NTP servers with hostnames ‘0.pool.ntp.org’ and ‘1.pool.ntp.org’
are contained in the ‘servers’ attribute (another JSON array!)

	Click the ‘Send’ button and verify the requested changes were
successfully implemented

Task 3 – Update default user account passwords

In this task we will update the passwords for the ‘root’ and ‘admin’
accounts. The process for updating the root account is different then
other system accounts due to the special nature of the root account.

To update the root account password we will use a POST to a shared REST
worker at /mgmt/shared/authn/root

To update all other system accounts we will PATCH the
/mgmt/auth/user/<username> Resource

Perform the following steps to change the root user password:

	Click the “Step 7: Set root User Password” item in the collection.

	Notice that we a performing a POST operation to a shared REST
worker. Modify the JSON body to update the password to the value
“newdefault” and click the ‘Send’ button.

[image: image26]

	You can verify the password was changed by opening an SSH session
using PuTTY to BIG-IP-A.

	Repeat the procedure above to change the password back to
“default”

Perform the following steps to change the admin user password:

	Click the “Step 8: Set admin User Password” item in the collection.

	Notice that we a performing a PATCH operation to admin user
Resource. Modify the JSON body to update the password to the value
“newadmin” and click the ‘Send’ button.

[image: image27]

	You can verify the password was changed by opening an SSH session
using PuTTY to BIG-IP-A OR by logging into TMUI in a Chrome browser
tab.

	Repeat the procedure above to change the password back to “admin”

Lab 1.4 – Basic Network Connectivity

This lab will focus on configuration of the following items:

	L1-3 Networking
	Physical Interface Settings

	L2 Connectivity (VLAN, VXLAN, etc.)

	L3 Connectivity (Self IPs, Routing, etc.)

We will specifically cover the items in BOLD above in the following
labs. It should be noted that many permutations of the Device Onboarding
process exist due to the nature of customer environments. This class is
designed to teach enough information so that you can then apply the
knowledge learned and help articulate and/or deliver a specific solution
to your customer.

The following table lists the L2-3 network information used to configure
connectivity for BIG-IP-A:

	Type
	Name
	Details

	VLAN
	Internal
	Interface: 1.1

Tag: 10

	VLAN
	External
	Interface: 1.2

Tag: 20

	Self IP
	Self-Internal
	Address: 10.1.10.1/24

VLAN: Internal

	Self IP
	Self-External
	Address: 10.1.20.1/24

VLAN: External

	Route
	Default
	Network: 0.0.0.0/0

GW: 10.1.20.254

Task 1 – Create VLANs

Perform the following steps to configure the VLAN objects/resources:

	Expand the “Lab 1.4 – Basic Network Connectivity” folder in the
Postman collection.

	Click the “Step 1: Create a VLAN” item in the collection. Examine the
JSON body; the values for creating the Internal VLAN have already
been populated.

	Click the ‘Send’ button to create the VLAN

	Repeat Step 1, however, this time modify the JSON body to create the
External VLAN using the parameters in the table above.

	Click the “Step 2: Get VLANs” item in the collection. Click the
‘Send’ button to GET the VLAN collection. Examine the response to
make sure both VLANs have been created.

Task 2 – Create Self IPs

Perform the following steps to configure the Self IP objects/resources:

	Click the “Step 3: Create a Self IP” item in the collection. Examine
the JSON body; the values for creating the Self-Internal Self IP have
already been populated.

	Click the ‘Send’ button to create the Self IP

	Repeat Step 1, however, this time modify the JSON body to create the
Self-External Self IP using the parameters in the table above.

	Click the “Step 4: Get Self IPs” item in the collection. Click the
‘Send’ button to GET the Self IP collection. Examine the response to
make sure both Self IPs have been created.

Task 3 – Create Routes

Perform the following steps to configure the Route object/resource:

	Click the “Step 5: Create a Route” item in the collection. Examine
the JSON body; the values for creating the Default Route have already
been populated.

	Click the ‘Send’ button to create the Route

	Click the “Step 6: Get Routes” item in the collection. Click the
‘Send’ button to GET the routes collection. Examine the response to
make sure the route has been created.

Lab 1.5 – Build a BIG-IP Cluster

In this lab we will build a active-standby cluster between BIG-IP-A and
BIG-IP-B. As mentioned previously, to save time, BIG-IP-B already has
already been licensed and had its device level settings configured. This
lab will walk you through creating the cluster step by step. As you will
see complex operation such as this start to become less effective using
the Imperative model of automation. Clustering is one of the
‘transition’ points for most customers to move into the Declarative
model (if not already done) due to the need to abstract device/vendor
level specifics from Automation consumers.

The high-level procedure required to create the cluster is:

	Rename the CMI ‘Self’ Device name to match the hostname of the
Device

	Set BIG-IP-A & BIG-IP-B CMI Parameters (Config Sync IP, Failover
IPs, Mirroring IP)

	Add BIG-IP-B as a trusted peer on BIG-IP-A

	Check the device_trust_group Sync Group Status

	Create a sync-failover Device Group

	Check the status of the created Device Group

	Perform initial sync of the Device Group

	Check status (again)

	Change the Traffic Group to use HA Order failover (not required but
shown as an example)

	Create Floating Self IPs

Task 1 – Rename objects and Setup CMI Global Parameters

In this task we will complete Items 1&2 from the list high-level
procedure at the beginning of the lab. One of the idiosyncrasies of
BIG-IP is that when you use the GUI Setup Wizard to set the hostname of
the device, the wizard automatically renames the CMI ‘Self’ device to
match the hostname. Since we configured the hostname via a REST call
earlier this action did not take place.

Perform the following steps to rename the CMI ‘Self’ device:

	Expand the “Lab 1.5 – Build a Cluster” folder in the Postman
collection

	Click the “Step 1: Rename the CMI Self Device’ item in the collection

	Examine the URI and JSON body. We are sending a POST request to
execute the equivalent of a tmsh mv command to rename the
existing object to the /mgmt/tm/cm/device Collection.
The name attribute specifies the current name of the object (the
factory default name), while the target attribute specifies the
new name of the object.

	Click the ‘Send’ button to rename the Resource.

	Change the request type from a POST to a GET and click ‘Send’.
Examine the response to make sure the name was changed successfully.

Perform the following steps to set CMI Device Parameters

	Click the “Step 2: Set BIGIP-A CMI Device Parameters” item in the
collection. Examine the operation (PATCH), URI and JSON body. We
will PATCH the newly renamed object (from the previous step) and
assign the Config Sync IP, Unicast Failover Address/Port and
Mirroring IPs:
[image: image28]

	Click the ‘Send’ button and examine the response to ensure the
settings were changed

	Click the “Step 3: Set BIGIP-B CMI Device Parameters” item in the
collection. Examine the operation (PATCH), URI and JSON body. We
will PATCH the newly renamed object (from the previous step) and
assign the Config Sync IP, Unicast Failover Address/Port and
Mirroring IPs.

EXTRA CREDIT: How is authentication to BIG-IP-B working if we never
got an authentication token? (Hint: we cheated)

	Click the ‘Send’ button and examine the response to ensure the
settings were changed

Task 2 – Add BIG-IP-B as a Trusted Peer

The CMI subsystem relies on a PKI based device trust model to establish
relationships between BIG-IP systems. In this task we will add BIG-IP-B
as a trusted peer of BIG-IP-A. Establishing a trust relationship is
automatically a bi-directional operation. As a result, when we establish
the trust relationship, BIG-IP-B will automatically establish a trust
relationship with BIG-IP-A. This task corresponds to items 3&4 in the
high-level procedure.

Perform the following steps to complete this task:

	Click the “Step 4: Add BIGIP-B Device to CMI Trust on BIGIP-A” item
in the collection

	Examine the operation (POST), URI and JSON body. We are using a
special REST worker to add the device to the CMI trust. Additionally
the JSON body must be specified in a very specific manner to ensure
this step completes successfully. To minimize the chance for error
the values have been completed for you already. You should, however,
review and understand this step fully before continuing.

	Click the ‘Send’ button. The response for this request does NOT
indicate success, only that the command is running.

	To check for success we have to check the status of the Sync Group
named “device_trust_group”. To do this click the “Step 5: Check
Sync Group Status” item in the collection. This request will GET the
sync status for all sync groups on the system

	Click the ‘Send’ button and examine the response. The should
indicate a color of ‘green’, that bigip-b.f5se.local is connected
and ‘In Sync’ (please notify an instructor of any issue):
[image: image29]

Task 3 – Create a sync-failover Device Group

This task will create a Device Group object that will contain the two
BIG-IP systems. The type of device-group will be a ‘sync-failover’
group, however, ‘sync-only’ groups can also be created with the same
procedure but different attribute values. This task corresponds to items
5-8 in the high-level procedure.

Perform the following steps to complete this task

	Click the “Step 6: Create Device Group” item in the collection.
Examine the request type, URL and JSON body. We will POST to the
‘/mgmt/tm/cm/device-group’ collection and create a new Resource
called DeviceGroup1 that includes both BIG-IP devices and is set to
‘sync-failover’ type. We are also setting the device-group to
‘autosync’ so manual syncing is not required when configuration
changes occur:
[image: image30]

	Click the ‘Send’ button and examine the response.

	To check the status of the device-group we have to check the status
of the underlying sync group on the system. Click the ‘Step 7:
Check Sync Group Status’ item in the collection and click ‘Send’.
Examine the response and take note that the system is ‘Awaiting
Initial Sync’:
[image: image31]

	We will now manually sync DeviceGroup1 to fulfill the need for the
Initial Sync. Click the ‘Step 8: Manually Sync DeviceGroup1’ item
in the collection. Examine the request type, URL and JSON body. We
will POST the the ‘/mgmt/tm/cm/config-sync’ worker and tell it to
‘run’ a config-sync of BIG-IP-A ‘to-group’ DeviceGroup1:
[image: image32]

	Click ‘Send’ to initiate the sync

	Click the ‘Step 9: Check Sync Group Status’ item in the collection
and click the ‘Send’ button. Examine the response to make sure that
DeviceGroup1 is ‘In Sync’. You may have to click ‘Send’ multiple
times as the sync operation can take a while to complete.

Task 4 – Perform Additional Operations

The remainder of the steps show how to manipulate various common items
related to the HA config. In this task we will change the Traffic Group
to use the ‘HA Order’ failover method. We will then initiate a failover
and show how to view the status of the traffic-group.

Perform the following steps to complete this task:

	Click the “Step 10: Get Traffic Group Properties” item in the
collection. Examine the URL, we will GET the attributes of the
‘traffic-group-1’ resource from the traffic-group collection. Click
the ‘Send’ button and review the response.

	Click the “Step 11: Change Traffic Group to use HA Order” item in the
collection. Examine the request type, URL and JSON body. We will
PATCH the existing resource and specify an ‘haOrder’ attribute to
change the traffic-group behavior.

	Click the ‘Send’ button and examine the response to verify the change
was successful.

	Click the “Step 12: Get Traffic Group Failover States” item in the
collection and click the ‘Send’ button. Examine the response and
determine which device is ‘active’ for the traffic-group:
[image: image33]

	Click EITHER the “Step 13A” or “Step 13B” item in the collection
depending on which device is ACTIVE for the traffic group. Notice
that we are sending the request to the ACTIVE device for the traffic
group. Examine the JSON body and click the ‘Send’ button.

	Click the “Step 14: Get Traffic Group Failover States” item in the
collection and click the ‘Send’ button. Examine the response to
determine that the failover occurred properly:
[image: image34]

Task 5 – Create Floating Self IPs

To complete the HA config we will now create a Floating Self IP on the
Internal VLAN.

Perform the following steps to complete this task:

	Click the “Step 15: Create a Floating Self IP” item in the
collection. Examine the request type, URL and JSON body. We will
create a new resource in the /mgmt/tm/net/self collection named
‘Self-Internal-Floating’ and an IP address of 10.1.10.3.

	Click the ‘Send’ button and examine the response

	Click the “Step 16: Get Self IPs” item in the collection and click
‘Send’. Examine the response and verify the Self IP was created.

Lab 1.6 – Build a Basic LTM Config

In this lab we will build a basic LTM Config using the Imperative
automation model. While this lab may seem simple for basic
configurations, the complexity involved with rich L4-7 services quickly
makes the Imperative approach untenable for advanced configurations. The
Imperative model relies on the user having in-depth knowledge of device
specifics such as:

	Object types and their attributes
	How many different objects/profiles/options do we have?

	Order of operations
	Monitor before pool before profiles before virtual servers, etc.

	What about L7 use cases like WAF?
	WAF Policy -> HTTP Policy -> Virtual Server

	How does this all get deleted?
	You have to reverse the order of operations and ‘undo’ the whole
config
	TMOS has lots of issues here

As a result of this it’s recommended for customers to use Imperative
automation only for legacy environments. New environments should shift
to a Declarative model.

Task 1 – Build a Basic LTM Config

Perform the following steps to complete this task:

	Expand the “Lab 1.6 – Build a Basic LTM Config” folder in the Postman
collection

	Click each Step in the folder and ‘Send’ the request. Verify each
component is created on the BIG-IP device using the GUI.

	After the steps are completed you should be able to connect to
http://10.1.20.129 in your browser.

Lab 1.7 – REST API Transactions

Task 1 – Create a Transaction

In this lab we will create a transaction using the REST API.
Transactions are very useful in cases where you would want discreet REST
operations to act as a batch operation. As a result the nature of a
transaction is that either all the operations succeed or none of them
do. This is very useful when creating a configuration that is linked
together because it allows the roll back of operations in case one
fails.
All the commands issued, are queued one after one in the transaction.
We will also review how to change the order of a queued command or remove
a single command from the queued list before commiting.

Perform the following steps to complete this task:

	Expand the ‘Lab 1.7 – Rest API Transactions’ folder in the Postman
collection:

[image: image35]

	Click the ‘Step 1: Create a Transaction’ item. Examine the URL and
JSON body. We will send a POST to the /mgmt/tm/transaction worker
with an empty JSON body to create a new transaction.

[image: image36]

	Click the ‘Send’ button to send the request. Examine the response
and find the ‘transId’ attribute. Save the value of this attribute
in the ‘transaction_id’ environment variable. Additionally notice
that there are timeouts for both the submission of the transaction
and how long it should take to execute. Be aware that after the
‘timeoutSeconds’ value, this transId will be silently removed:

[image: image37]
[image: image38]

	Click the ‘Step 2: Add to Transaction: Create a HTTP Monitor’ item
in the Postman collection. This request is the same as a
non-transaction enabled request in terms of the request type
(POST), URI and JSON body. The difference is we add a
X-F5-REST-Coordination-Id header with a value of the transId
attribute to add it to the transaction:

[image: image39]

	Click the ‘Send’ button and examine the response

	Examine and click ‘Send’ on Steps 3-6 in the collection

	Click ‘Step 7: View the Transaction queue’. Examine the request type and
URI and click ‘Send’. This request allows you to see the current
list of commands (ordered) that are in the transaction.

Task 2 – Modify a Transaction

	Click the ‘Step 8: View queued command 4 from Transaction’ item in the collection.
Examine the request type and URI. We will GET the queued command number 4 from
the transaction list.
[image: image76]

	Click the ‘Step 9: Change Eval Order 4 ->1’ item in the collection.
Examine the request type, URI and JSON body. We will PATCH our
transaction resource and change the value of the ‘evalOrder’ attribute,
from 4 to 1, to move at the first position of the transaction queue:
[image: image77]

	Click the ‘Step 10: View the Transaction queue changes’ item in the collection.
Examine that the transaction number 4 has moved into position 1 and
all other transactions eval order has moved accordingly.

Task 3 – Commit a Transaction

	Click the ‘Step 11: Commit the Transaction’ item in the collection.
Examine the request type, URI and JSON body. We will PATCH our
transaction resource and change the value of the ‘state’ attribute
to submit the transaction:
[image: image40]

	Click the ‘Send’ button and examine the response.

	Verify the config was created using TMUI or REST requests.

Warning

When sending the Header X-F5-REST-Coordination-Id, the
system assumes you want to add an entry in the transaction
queue. You MUST remove this header if you want to issue
transaction queue changes (like deleting an entry from the
queue, changing the order, commiting a transaction). If you
don’t remove the header in that specific case, the system
will send a 400 with the following type of error:
“message”: “Transaction XXXXX operation is not allowed
to be added to transaction.”

Module 2 – iWorkflow

In this module we will explore how to use F5’s iWorkflow platform to
further abstract application services and deliver those services to
tenants. iWorkflow has two main purposes in the Automation &
Orchestration toolchain:

	Provide simplified but customizable Device Onboarding workflows

	Provide a tenant/provider interface for L4 – L7 service delivery

When moving to an iWorkflow based toolchain it’s important to understand
that L1-3 Automation (Device Onboarding, Networking, etc) and L4-7
(Deployment of Virtual Servers, Pools, etc) are separated and delivered
by different features.

L1-3 Networking and Device Onboarding are delivered by ‘Cloud
Connectors’ that are specific to the third party technology ecosystem
(e.g. vCMP, AWS, Cisco APIC, VMware NSX, BIG-IP, etc).

L4-7 service delivery is accomplished by:

	Declarative: Consuming F5 iApp templates from BIG-IP devices and
creating a Service Catalog.

	Imperative: Consuming the iWorkflow REST Proxy to drive API calls to
BIG-IP devices

The labs in the module will focus on the high level features in place to
achieve full L1-7 automation. As mentioned above, iApps are a key
component of this toolchain. For our purposes we will use the f5.http
iApp to create simple examples. For more advanced use cases it’s often
required to use a ‘Declarative’ or ‘Deployment-centric’ iApp template. A
community-supported template of this nature called the App Services
Integration iApp is available at
https://github.com/0xHiteshPatel/appsvcs_integration_iapp for this
purpose.

	Lab 2.1 – iWorkflow Authentication

	Lab 2.2 – Discover BIG-IP Devices

	Lab 2.3 – Create Local Connector

	Lab 2.4 – Create an L4–7 Service Template & Deployment

	Lab 2.5 – iWorkflow REST Proxy

Lab 2.1 – iWorkflow Authentication

iWorkflow supports the same authentication mechanisms as BIG-IP (HTTP
BASIC, Token Based Auth). In this lab we will quickly review TBA on
iWorkflow.

Task 1 – Token Based Authentication

In this task we will demonstrate TBA using the local authentication
database, however, authentication to external providers is fully
supported.

For more information about external authentication providers see the
section titled “About external authentication providers with
iControl REST” in the iControl REST API User Guide available at
https://devcentral.f5.com

Perform the following steps to complete this task:

	Click the ‘Step 1: Get Authentication Token’ item in the Lab 2.1
Postman Collection

	Notice that we are sending a POST request to the
/mgmt/shared/authn/login endpoint. Additionally, BASIC
Authentication is required on the initial token request:

[image: image41]

	Click the ‘Body’ tab and examine the JSON that we will send to
iWorkflow to provide credentials:

[image: image42]

	Modify the JSON body and add the required credentials (admin/admin).
Then click the ‘Send’ button.

	Examine the response status code. If authentication succeeded and a
token was generated the response will have a 200 OK status code. If
the status code is 401 then check your credentials:

Successful:

	[image: image43]

Unsuccessful:

	[image: image44]

	Once you receive a 200 OK status code examine the response body. The
various attributes show the parameters assigned to the particular
token. Find the ‘token’ attribute and copy it into your clipboard
(Ctrl+c) for use in the next step:

[image: image45]

	Click the ‘Step 2: Verify Authentication Works’ item in the Lab
2.1 Postman collection. Click the ‘Headers’ tab and paste the
token value copied above as the VALUE for the X-F5-Auth-Token
header. This header is required to be sent on all requests when
using token based authentication.

[image: image46]

	Click the ‘Send’ button. If you’re request is successful you should
see a ‘200 OK’ status and a listing of the ‘ltm’ Organizing
Collection.

	We will now update your Postman environment to use this auth token
for the remainder of the lab. Click the Environment menu in the top
right of the Postman window and click ‘Manage Environments’:

[image: image47]

	Click the ‘INTRO – Automation & Orchestration Lab’ item:

[image: image48]

	Update the value for ‘iworkflow_auth_token’ by Pasting (Ctrl-v)
in your auth token:

[image: image49]

	Click the ‘Update’ button and then close the ‘Manage Environments’
window. You’re subsequent requests will now automatically include
the token.

	Click the ‘Step 3: Set Authentication Token Timeout’ item in the
Lab 1.2 Postman collection. This request will PATCH your token
Resource (check the URI) and update the timeout attribute so we
can complete the lab easily. Examine the request type and JSON
Body and then click the ‘Send’ button. Verify that the timeout has
been changed to ‘36000’ in the response:

[image: image50]

Lab 2.2 – Discover BIG-IP Devices

In order for iWorkflow to interact with a BIG-IP device it must be
discovered by iWorkflow. The device discovery process leverages the
existing CMI Device Trust infrastructure on BIG-IP. Currently there is a
limitation that a single BIG-IP device can only be ‘discovered’ by ONE
of iWorkflow or BIG-IQ CM at a time. In this lab will we discover the
existing BIG-IP devices from your lab environment.

Task 1 – Discover BIG-IP Devices

Perform the following steps to complete this task:

	Expand the “Lab 2.2: Discover & License BIG-IP Devices” folder in the
Postman collection

	Open a Google Chrome window/tab to your iWorkflow device
(https://10.1.1.6) and login with default credentials (admin/admin).
You can use this window to monitor actions while they are being
performed in Postman. Find the ‘Devices’ pane and make if viewable if
it isn’t already.

	Click the “Step 1: Discover BIGIP-A Device” item in the Postman
collection. This will request will perform a POST to the
/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices/devices
worker to perform the device discovery process. Examine the JSON body
so you understand what data is sent to perform the discovery process:

[image: image51]

	Click the ‘Send’ button. Examine the response and monitor the
iWorkflow Chrome window you opened previously.

[image: image52]

	Copy the ‘uuid’ attribute for BIGIP-A and populate the
‘iworkflow_big_ip_a_uuid’ Postman environment variable with the
value:

[image: image53]
[image: image54]

	Repeat steps 1-4 with the “Step 2: Discover BIGIP-B Device” item in
the collection.

	Click the “Step 3: Get Discovered Devices” item in the collection.
We will GET the devices collection and verify that both BIG-IP
devices show a ‘state’ of ‘ACTIVE’:

[image: image55]

Lab 2.3 – Create Local Connector

Cloud Connectors in iWorkflow serve as the L1-3 Network and Device
Onboarding automation component in the automation toolchain. iWorkflow
supports Cloud Connectors for various vendor integrations (F5 vCMP, F5
BIG-IP, Cisco APIC, vmWare NSX, etc.) In this lab we will create a
‘BIG-IP Connector’ for the BIG-IP devices in the lab deployment. This
connector will then allow you to drive a fully automated deployment from
the iWorkflow Service Catalog.

Task 1 – Create a Local Connector

In this task we will create a Local Connector that is linked to our
BIG-IP devices. The Local Cloud Connector is DSC aware and will
automatically detect that the BIG-IP devices are clustered and configure
itself accordingly.

Perform the following steps to complete this task:

	Expand the “Lab 2.3 – Create Local Connector” folder in the Postman
collection.

	Click the “Step 1: Create a Local Connector” item in the
collection. We will create a new connector by performing a POST to
the local connector collection. If you examine the JSON body you
can see we are providing a reference to the URL for the BIG-IP-A
device (using the UUID environment variable we populated earlier):

[image: image56]

	Click the ‘Send’ button to create the connector.

	Click the “Step 2: Get Local Connectors” item in the collection and
click ‘Send’. Examine the output to see how the connector was
configured. Take note of the reference to the ‘device-group’. This
is how the connector determines the HA state of the underlying
BIG-IP devices. Find the ‘connectorId’ of the connector and update
your Postman environment to include the ‘connectorId’ as the value
of the ‘iworkflow_connector_uuid’ variable:

[image: image57]
[image: image58]

	Click the “Step 3: Assign Connector to Tenant” item in the
collection. The iWorkflow device has been pre-configured with a
tenant named ‘MyTenant’. This request will assign this connector to
to the ‘MyTenant’ tenant allowing service deployments from that
tenant. Click the ‘Send’ button and examine the response.

Lab 2.4 – Create an L4–7 Service Template & Deployment

To drive iApp automation-based L4-7 deployments, iWorkflow includes the
capability to create a Tenant Service Catalog via L4 – L7 Service
Templates. This model of deployment enables Declarative automation of F5
L4-7 services provided the underlying iApp templates are designed with a
declarative presentation layer in mind. To demonstrate this capability
we will create a simple Service Catalog Template and deploy and
application from a tenant on our BIG-IP devices.

Task 1 – Create L4–7 Service Template

An L4-7 Service Deployment on iWorkflow is driven by the creation of an
L4 – L7 Service Template. These templates allow a provider
(administrator) to specify the values of specific fields from an origin
iApp presentation layer. Additionally, the provider also defines the
tenant interface to the service by marking which fields are ‘Tenant
Editable’ and therefore visible during service deployment from the
tenant. You can think of a Service Catalog Template and a filter that
allows the vast majority of fields to be filled in or defaulted while
only exposing the minimal set of fields required to deploy a service.

In this task we will create a Service Catalog Template that utilizes the
f5.http iApp.

Perform the following steps to complete this task:

	Expand the “Lab 2.4 – iWorkflow Service Catalog & Service Deployment”
folder in the Postman collection

	Click the “Step 1: Create PROVIDER Service Catalog Template” item in
the collection. This request is pre-built and will create a new
template using the f5.http iApp. Click the ‘Send’ button to create
the template.

	Open a Chrome tab to iWorkflow (https://10.1.1.6) and login with
admin/admin credentials. Expand the ‘Catalog’ pane and double-click
the “Lab2.4_HTTP” template. Notice the cloud connector was
associated as part of the REST request, various defaults have been
populated (e.g. port ‘80’ for the pool__port variable) and some
fields have been marked as ‘Tenant Editable’:

[image: image59]

	Go back to the Postman window and select the “Step 2: Get TENANT
Service Catalog Template” item in the collection. Click the ‘Send’
button and examine the response. Notice that the TENANT definition of
the service only shows fields that were marked ‘Tenant Editable’

Task 2 – Tenant L4-7 Service Deployment

In this task we will perform CRUD operations based on a deployment of
the Service Catalog Template created in the previous task.

Perform the following steps to complete this task:

	Open a new Chrome tab to iWorkflow (https://10.1.1.6) and login with
the credentials Username: tenant, Password: tenant. Expand the
‘Services’ pane.

	Click the “Step 3: Create TENANT Service Deployment” item in the
collection. Examine the URL and JSON body. We will be creating a
new Tenant Service Deployment under ‘MyTenant’ with the properties
marked as ‘Tenant Editable’ provided:

[image: image60]

	Click the ‘Send’ button to create the Service Deployment. Examine
the response. The iWorkflow GUI in your Chrome tab will also
reflect a new item in the Services pane:

[image: image61]

	Open a Chrome tab to BIGIP-A. Click on Application Services ->
Applications -> Lab2.4_HTTP_DEMO to view the config that was
deployed on BIG-IP:

[image: image62]

	Go back to Postman and click the “Step 4: Get TENANT Service
Deployment” item in the collection and click ‘Send’. This item is
example of a GET of the service definition. The response should match
what you see in the iWorkflow GUI when viewing the properties of a
deployment.

	Click the “Step 5: Modify TENANT Service Deployment” item in the
collection. This request is an example of an Update operation.
Notice that we are sending a PUT request to the URL representing
the service deployment. Examine the JSON body and note that in the
‘pool__members’ table there is an additional pool member with an IP
of 10.1.10.12 that will be added. Click the ‘Send’ button to re-deploy the service:

[image: image63]

	Verify that the pool member was added on BIG-IP:

[image: image64]

	Go back to Postman and click the “Step 6: Delete TENANT Service
Deployment” item. This item will send a DELETE request to the URL for
the service deployment. Click ‘Send’ and verify that the deployment
has been removed in the iWorkflow and BIG-IP GUIs.

Lab 2.5 – iWorkflow REST Proxy

In order to enable Imperative automation use cases, iWorkflow includes a
REST proxy that allows pass-through of REST requests to devices managed
by iWorkflow. The REST proxy feature allows customers to simplify
automation by:

	Providing a centralized API endpoint for BIG-IP infrastructure
	No need to communicate with individual BIG-IP devices, only with
iWorkflow

	Simplified authentication
	Strong authentication can be implemented at iWorkflow rather than
on each BIG-IP

	Simplified RBAC
	RBAC can be implemented at iWorkflow for all devices rather on
individual devices in the environment

The rest proxy works by passing data sent to a specific URL through to
the BIG-IP device. The root URL for a particular devices REST proxy is:

/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices/devices/<device_uuid>/rest-proxy/

Any URL segments included after …/rest-proxy/ are forwarded unaltered
to the BIG-IP device. Query parameters (e.g. ?expandSubcollections=true)
are also passed unaltered along with the request type and request body.

Task 1 – Perform REST operations via the REST Proxy

In this task we will perform a sample CRUD operation utilizing the REST
Proxy. The intent of this task is to show the basic mechanism use to
perform these tasks. Simply changing the URL to include the iWorkflow
REST Proxy root for that device could easily change all the Imperative
operations we have completed in this lab to use the REST Proxy.

Perform the following steps to complete this task:

	Expand the “Lab 2.5 – iWorkflow REST Proxy” folder in the Postman
collection.

	Click the “Step 1: Create pool on BIGIP-A”. Examine the request
type, URL and JSON body. Essentially we are performing a POST to
the ‘/mgmt/tm/ltm/pool’ collection on BIGIP-A. The last part of the
URL includes this URI path (the part after ‘…./rest-proxy/’). The
JSON body and all other parameters are passed unaltered. Also,
notice that we are still using our iWorkflow Token to authenticate,
not the BIG-IP one.

[image: image65]

	Click the “Send” button and examine the response.

	Repeat steps 1-3 for the remaining items in the “Lab 2.5 – iWorkflow
REST Proxy” collection. Examine each request carefully so you
understand what is happening.

Module 3 - Python SDK

This module will cover the newly released F5 Python SDK. This SDK is
released and maintained as a public GitHub repository at
https://github.com/F5Networks/f5-common-python

The goal of the Python SDK is to provide a simple interface that
abstracts many of the F5-specific nuances of the iControl REST API away
from the user. As you learned in Module 1, when interacting directly
with the API it’s often necessary to build out requests in a very manual
fashion. In order to provide a simpler interface the SDK was developed
to abstract away many of the eccentricities of the API and provide a
clean, Pythonic interface.

For example, when creating a pool in, an Imperative automation model,
without the SDK you would be required to do something like the following
(this code is not complete):

import requests
import sys
base_url = “https://10.1.1.4/mgmt/tm/ltm/pool/”

pool_attributes = {
 “name”: “test_pool”,
 “partition”: “Common”,
 “loadBalancingMode”: “least-connections-member”,
 “minUpMembers”: 1
}

s = requests.session()
s.auth = (“admin”, “admin”)

resp = s.post(base_url, data=json.dumps(pool_attributes))

if resp.status_code != requests.codes.ok:
 print “Error creating pool”

sys.exit(1)

When using the Python SDK the equivalent code is:

from f5.bigip import ManagementRoot

mgmt = ManagementRoot(“10.1.14”,”admin”,”admin”)

pool = mgmt.tm.ltm.pools.pool.create(partition=”Common”, name=”test_pool”)
pool.loadBalancingMode = “least-connections-member”
pool.minUpMembers = 1

pool.update()

As you can see the code utilizing the SDK is much more condensed and far
easier to read. This is a result of the SDK exposing abstracted methods
to build the URL. Additionally the SDK creates standard CURDLE (create,
update, refresh, delete, load, exists) methods that behave correctly
depending on REST object type (Organizing Collection, Collection,
Resource, etc.) you are interacting with (e.g., you cannot DELETE an
Organizing Collection, therefore a delete() method is not available).

Full documentation for the API exists at here [https://f5-sdk.readthedocs.io]

For the purpose of this lab your Windows Jumphost has everything
pre-installed, however, since the SDK is a standard python package the
process is trivial on any system (Windows, Linux, Mac, etc.) that has
Python installed.

It’s important to keep in mind while going through this module that we
are only demonstrating what is possible with the SDK from a high level. For example the
same scripts used in this module are designed to run from the command
line with arguments, however, they could easily be modified to use JSON
files as the input mechanism.

	Lab 3.1 – create_pool.py

	Lab 3.2 – read_pool.py

	Lab 3.3 – update_pool.py

	Lab 3.4 – update_pool_member_state.py

	Lab 3.5 – delete_pool.py

	Lab 3.6 – Create a Python Script

	Lab 3.7 – EXTRA CREDIT – Modify create_pool.py

	Lab 3.8 – EXTRA CREDIT – Review super_pool.py

Lab 3.1 – create_pool.py

In this lab we will review, line-by-line an example script that has been
created to allow creation of a BIG-IP Pool with Pool Members directly
from the command line.

Task 1 – Review create_pool.py

	Open Notepad++ using the [image: image66] located in the Windows Taskbar.

	Double click the file create_pool.py in the menu on the left side
of the Notepad++ screen

	We will now review the code line-by-line:

from f5.bigip import ManagementRoot
import pprint
import argparse
pp = pprint.PrettyPrinter(indent=3)

These lines import in various Python libraries. The first line
imports the F5 Python SDK. The pprint and argparse libraries are
standard Python libraries that aid in print data to the console and
parsing command line arguments.

parser = argparse.ArgumentParser(description='Script to create a pool on a BIG-IP device')
parser.add_argument("host", help="The IP/Hostname of the BIG-IP device")
parser.add_argument("pool_name", help="The name of the pool")
parser.add_argument("pool_members", help="A comma seperated string in the format <IP>:<port>[,<IP>:<port>]")
parser.add_argument("-P", "--partition", help="The partition name", default="Common")
parser.add_argument("-u", "--username", help="The BIG-IP username", default="admin")
parser.add_argument("-p", "--password", help="The BIG-IP password", default="admin")
args = parser.parse_args()

These lines setup the command line arguments for the script and store
those arguments in a python dictionary names ‘args’. The argparse
library automatically generates help text, checks for required
arguments, sets defaults, etc.

mgmt = ManagementRoot(args.host, args.username, args.password)

This line creates a new Python object that refers to the BIG-IP
device. We are calling the ManagementRoot method with 3 arguments:

	The value of the host argument

	The value of the username argument

	The value of the password argument

This method automatically performs a test to ensure that we are able
to reach the device and authenticate successfully.

pool_path = "/%s/%s" % (args.partition, args.pool_name)

This line just stores the human-readable path to the pool name for later
use

if mgmt.tm.ltm.pools.pool.exists(partition=args.partition, name=args.pool_name):
raise Exception("Pool '%s' already exists" % args.pool_name)

This if statement checks to see if a pool with the same name already
exists on the specified partition on the device. The return value of the
exists() method is a Boolean value of True or False. In this case we
want the Exception to execute if a pool DOES exist and stop execution of
the script.

pool = mgmt.tm.ltm.pools.pool.create(partition=args.partition, name=args.pool_name)
print "Created pool %s" % pool_path

The first line in this block actually creates the new pool. The
partition and name of the pool are specified as arguments to the
create() method and the ‘pool’ variable represents an object that holds
the created pool’s properties. The second line simply prints a message
that the pool has been created.

member_list = args.pool_members.split(',')

This line uses a built-in python method called split() to separate the
value of the command line argument into discrete strings using a ‘,’ as
a separator. The return type of the split() is a python list (lists =
arrays)

for member in member_list:
pool_member = pool.members_s.members.create(partition=args.partition, name=member)
print " Added member %s" % member

This for loop iterates over the elements in the list generated above and
creates a new member in the pool.

Task 2 – Run create_pool.py

	Open Console2 using the [image: image67] icon on the Windows Taskbar

	The console window automatically opens in the Desktop\Module 3 –
Python SDK directory

	Type set PYTHONWARNINGS=ignore to disable the printing of SSL/TLS
warnings about self-signed certificates.

	Type python create_pool.py and examine the help output:

[image: image68]

	Type python create_pool.py 10.1.1.4 test_pool 10.1.10.10:80,10.1.10.11:80
to create a new pool:

[image: image69]

	Using Chrome open a tab to BIGIP-A (https://10.1.1.4). Examine the
pool that was created.

Lab 3.2 – read_pool.py

In this lab we will review, line-by-line an example script that has been
created to view the attributes of a BIG-IP Pool directly from the
command line.

Task 1 – Review read_pool.py

	Open read_pool.py in Notepad++

	We will review the code. For brevity we have removed lines that are
common with previous examples:

if not mgmt.tm.ltm.pools.pool.exists(partition=args.partition, name=args.pool_name):
raise Exception("Pool '%s' does not exist" % args.pool_name)

This if statement checks to see if a pool with the same name exists
in the specified partition on the device. The key difference between
this and the example in the previous lab is the inclusion of the
‘not’ keyword. This inverses the logic of the statement so that the
Exception is raised when the pool DOES NOT exist

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)

This line loads the configuration of the pool into a variable

print "Pool %s:" % pool_path
pp.pprint(pool.raw)

These lines print the human-readable pool path and then uses the
PrettyPrint library to dump all the attributes associated with the
pool

Task 2 – Run read_pool.py

	In the command prompt type python read_pool.py 10.1.1.4 test_pool
and examine the output:

[image: image70]

	Notice the various attributes that are associated with the pool. Take
note of the value of the loadBalancingMode attribute for the next
lab

Lab 3.3 – update_pool.py

In this lab we will review, line-by-line an example script that has been
created to allow updating any attribute of a pool using the
command-line. This script is a good example of creating generic tools
that enable many use cases. Rather than creating a script that just
updates a specific attribute we created one that updates ANY pool
attribute, greatly expanding it’s potential use cases.

Task 1 – Review update_pool.py

	Open update_pool.py in Notepad++

	We will review the code. For brevity we have removed lines that are
common with previous examples:

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)

pp.pprint("Current: %s=%s" % (args.attribute, getattr(pool, args.attribute)))

These lines load the pool from the device and print the current
value of the attribute specified on the the command line. The
second line is a little bit tricky because the SDK dynamically
populates the objects attributes based on the type of object (pool,
virtual server, etc.). Normally we could just use something like
‘pool.loadBalancingMode’ to get the current lb-method for the pool,
however, since this script implements a way to change ANY attribute
in the object we have to dynamically substitute the attribute name
at run-time. To do this we use the getattr() python built-in
function to resolve the mapping at runtime and return the value of
the attribute specified on the command line.

kwargs = {args.attribute: args.value}

This line creates a new python dictionary with one entry specifying
a key-value pair using the command line arguments. For example if
you were updated the loadBalancingMode attribute to
‘least-connections-member’ the dictionary would look like
{“loadBalancingMode”:”least-connections-member”}

pool.update(**kwargs)

The first line updates the pool we loaded previously with the new
value for the attribute. The **kwargs argument to the update()
method triggers a special mechanism in python called ‘keyword
unpacking’ which allows us to pass the attribute to be updated to the
update() method.

pool.refresh()
pp.pprint("New: %s=%s" % (args.attribute, getattr(pool, args.attribute)))

The first line refreshes the data in the object from the BIG-IP
device. The second line prints this refreshed information to the
console so the user can verify the update completed successfully.

Task 2 – Run update_pool.py

	In the command prompt type
python update_pool.py 10.1.1.4 test_pool loadBalancingMode least-connections-member
and examine the output:

[image: image71]

	You can manually verify the load balancing method was changed via
TMUI or by re-running read_pool.py (it’s not required since the line
that prints the new value forces a refresh())

	Experiment with changing other pool attributes

Lab 3.4 – update_pool_member_state.py

One of the most common tasks asked for by customers is the ability to
set a pool member’s state via a script. We have included an example of
such a script in the lab that can be used to see how easy
it is to automate specific operational tasks.

Task 1 – Run update_pool_member_state.py

	In the command prompt type
python update_pool_member_state.py 10.1.1.4 test_pool 10.1.10.10:80 disabled
and examine the output.

	Verify the pool member was disabled via TMUI

	Re-run the script with as
python update_pool_member_state.py –-help to see additional options.

	Re-enable the pool member using the script

Lab 3.5 – delete_pool.py

In this lab we will review, line-by-line an example script that has been
created to allow deletion of a pool using the command-line.

Task 1 – Review delete_pool.py

	Open delete_pool.py in Notepad++

	We will review the code. For brevity we have removed lines that are
common with previous examples:

pool = mgmt.tm.ltm.pools.pool.load(partition=args.partition, name=args.pool_name)
pool.delete()

print "Deleted pool %s" % pool_path

These lines should be fairly self-explanatory at this point. First we
load the pool and the we delete() it and print that we have done so.

Task 2 – Run delete_pool.py

	In the command prompt type
python delete_pool.py 10.1.1.4 test_pool
and examine the output:

[image: image72]

	If desired verify the pool was deleted using TMUI or the
read_pool.py script (it should return an error)

Lab 3.6 – Create a Python Script

In this lab we will use the ‘Generate Code’ feature of Postman to create
a python script from a collection of requests.

Task 1 – Create a simple script

Perform the following steps to complete this task:

	Expand the ‘Lab 3.6 – Create a Python Script’ folder in the Postman
collection

	Click the ‘Step 1 – Create a HTTP Monitor’ item in the collection

	Click the ‘Generate Code’ link in the Postman window:

[image: image73]

	Select Python -> Requests from the menu on the top right of the window:

[image: image74]

	Examine the Python code that was generated. Click the ‘Copy to
Clipboard’ button

	Open a new text file and paste the generated code. We need to
modify the line that sends the request to DISABLE SSL certificate
verification. Find the following line:

response = requests.request("POST", url, data=payload, headers=headers)

And add a verify=False option to it:

response = requests.request("POST", url, data=payload, headers=headers, verify=False)

Save the file on your Desktop as lab3_6.py

	Open a command prompt and run the script by typing
python lab3_6.py:

[image: image75]

	Verify the monitor was created on BIG-IP

	Delete the monitor to prepare for the next task

Task 2 – Chain together multiple requests

In this task we will repeat the process from Task 1 to chain together
multiple requests.

Perform the following steps:

	Repeat the procedure from Task 1 with each of the items in the ‘Lab
3.6’ postman collection. Append each snippet of code to your existing
script until you have all 5 requests in the script. You will need
to remove the duplicate ‘import requests’ lines and update each
request with the ‘verify=False’ option.

	Save the file

	Run the script and verify the config was created.

Lab 3.7 – EXTRA CREDIT – Modify create_pool.py

This is an open-ended exercise. Copy create_pool.py to create_vs.py
and modify it to create a Virtual Server. You could also cheat and look
at you_cheated.py!

Lab 3.8 – EXTRA CREDIT – Review super_pool.py

This is an open-ended exercise. Review and run the super_pool.py
script. This script allows bulk creation/deletion of pools using CSV
files.

Index

 _static/image009.png
INTRO - Automati.. Vv

™

ge Environments
Shared Environments

No Environment

—* INTRO - Automaion & Orchestation L.

Generate Code

_static/image049.png
MANAGE ENVIRONMENTS ;

Manage Environments

Edit Environment Bulk Edit

INTRO - Automation & Orchestration Lab

o big_ip_a_mgmt 10.1.1.4

o big_ip_b_mgmt 10.1.1.5

o iworkflow_mgmt 10.1.1.6

o big_ip_a_auth_token QIXKEHOQWZFW35VC3|RZOXWNNDQ

o big_ip_b_auth_token \

o iworkflow_auth_token (C25CKSFQAICIQGKUJONCLMWZeW

° iworkflow_pool_uuid 50154d6a-21c6-4644-9abd-43cccelB80fad
° iworkflow_connector_uuid 1451c915-3627-4363-8afb-5c2527a3bd7f

_static/image052.png
Body Cookies Headers (12) Tests

Pretty Raw Preview JSON v s
1-|{|
2 "uuid": "891a387fb-b592-4fea-aedf-f1590836027c",
3 "deviceUri": "https://10.1.1.4:443",
4 "machineId": "891a87fb-p592-4fea-aedf-f1590836027c",
5 "state"™: "PENDING",‘-
["address™: "18.1.1.4",
7 "httpsPort": 443,
8- "properties”: {
9 "izRestProxyEnabled”: true,
18 "izSoapProxyEnabled”: true,
11 "isTmshProxyEnabled”: false,
12 "dmaConfigPathScope™: "basic™
13 Is
14 "automaticallyUpdateFramework": true,
15 "groupName": "cm-cloud-managed-devices”,
16 "rootUser”: "root",
17 "ganeration™: 18,

_static/image066.png

_static/image038.png
MANAGE ENVIRONMENTS

Manage Environments

Edit Environment Bulk Edit

[—

big_ip_a_mgmt 10.1.1.4

10405

(X

10.1.1.6
big ip_a_auth_token
big_ip_b_auth_token

workfi

iworkflow,_big_ip_a_uuid

workfi

. connector_uuid

ransaccon 4 —

00000000

Cancel

_static/image024.png
Body Cookies Headers (25) Tests

Pretty Raw Preview JSON Vv -

pool members that have been up for more than 60 seconds. After
seconds, it receives approximately three quarters of the new t
useful when used with the least-connections-member load balanc

37 s

38 "allowNat": "yes",

39 "allowSnat": "yes",

40 "appService": "",

41 "autoscaleGroupId": "",

42 "description": "",

43 "gatewayFailsafeDevice": "",

44 "ignorePersistedWeight": "disabled",

45 "ipTosToClient": "pass-through",

46 "ipTosToServer": "pass-through",

47 "linkQosToClient": "pass-through",

48 "linkQosToServer": "pass-through",

49 "loadBalancingMode": "round-robin",

50 ~ "membersReference": {

51 "link": "https://localhost/mgmt/tm/1tm/pool/members/example?ver=12

52 "isSubcollection": true

3 }s

54 "metadata": [],

55 "minActiveMembers": 0,

56 "minUpMembers": @,

57 "minUpMembersAction"”: "failover",

58 "minUpMembersChecking": "disabled",

_static/image034.png
Body Cookies Headers 22) Tests Status: 200K T

Q s

Prery Row Prevew | KON v S5

1-4

2 raffic-group: traffic-groupstats”,

3 a1,

4 hetps://Localnost/mgnt/th/cn/SrafFic-group, traffic-group-1/stats e

5o

6-| "https://localhost/mgat/tn/cn/trafFic-group/ trafFic-group-1/~Comon~trafFic-group-1:~Comon-bigip-a. fSse. local stats™: {
70 "nestedstats™: {

s ind": "tm:cm: traffic-group: trafFic-groupstats

9 C1FLink": "https://Localnost /mgnt /tn/cn/SrafFic-group/traf Fic-group-1/~Common-traffic-group-1i~Common-bigip-a. F5se.
10+ ntries”:

- deviceliane”

2 description®: "/Comon/bigip-a. F5se. Locol” WfEmm—,

5 1

14+ Fatloverstat

15 Gescriptio

15 I3

7~ extactive™: {

1 Gescription":

19

20+ rofeicroup™ {

2 ‘Gescription": "/Common/traffic-group-1"

2 ¥

2 ¥

2)

2 %

26| "https://localhost/mgnt./tn/cu/traéic-group/ traf¢ic-group-1/~Conmon-trafFic-group-1:~Comon-bigip-b. fSse. local/stats": {
27+ "nestedstats™: {

2% ind": "t cn: trafFic-group: traffic-groupstats”,

2 C1FLink": "https://Localnost /mgnt /tn/cn/SrafFis-group/traf Fic-group-1/~Common-traffic-group-1i~Common-bigip-b. F5se.
30~ ntries:

310 eviceliane: {

2 Gescription": "/Comnon/bigip-b.fSse.loca:

3

3.

35

36

_static/image021.png
MANAGE ENVIRONMENTS

Manage Environments

Edit Environment Bulk Edit

INTRO - Automation & Orchestration Lab

big_ip_a_mgmt 101.1.4

big_ip_b_mgmt 10405

iworkflow_mgmt 1 10116
bigip_a_auth_token QIXKEHQWZFW35VC3IRZOXWNNDQ)

big ip_b_auth_token

00000

_static/image019.png
INTRO - Automation & Orct Fy

nage Environments.

] Shared ironme

Params. save

_static/image044.png
Body Cookies Headers(15) Tests Status: 401 F5 Authorization Required Time: 2128 ms

by Rew reiew | WMLV T3 Q Sove Resporse

B 1 |<xml version="1.0" er
2 | <1DOCTYPE html PUBLIC

oding="150-8859-1"2>
//W3C//DTD XHTML 1.8 Strict//El

_static/image045.png
Body Cookies Headers (12) Tests

Pretty Raw Preview JSON W =
1-|{|
2 "username”: "admin”,
3~ "loginReference”: {
4 "link": "https://localhost/mgmt/cm/system/authn/providers/local/login"
5 1
6 "loginProviderName™: "local",

i~ "token™: {
8 "token": "PXS5Z4NE2KDYTIGGREOAYYALJ41™,
9 m L]

name"”: "PXSZANEZKDYTIGGRBOAYYAUJ4I™,
18 "userName”: "admin",
11 "authProviderName": "local",
12 ~ "user": {
13 "link": "https://localhost/mgmt/shared/authz/users/admin"
14 Fs
15 "groupReferences”: [],

16 "timeout": 1208,

n -5 [T R I L | P ™I ™ ™ S S oa~ -— Fe e a2l |

_static/image064.png
iApps » Application Services : Applications.

2 - | Prope figure Components

a=ser
@Lab2.4 HTTR_DEMO
9 [O Leb2.4_HTTP_DEMO_vs
@3 Leb24_HTTP_DEMO, oot
8Lat2._HTTP_DEMO_ptp_morior
@ 0000
$@r0r1010
@ 000
B 101101
2 d000ee
$O011012 Vil
5] Lab2_HTTP_DEMO_source-scarpersistence
A1
(5] Lab2.4_HTTP_DEMO_sookie perssence.
(5 Lav2.4_HTTP_DEMO_htp
Dl a4 HTTP DEMO too.wanontimiad

_static/image075.png
C:h%Usershuser’Desktop>python labl Z.py
C:WPythonz?h lib' site-packagesh requests’ packageshurllib3h connectionpool.py:821: InsecureRegquestWarning: Unwverified HTTPS re
quest iz being mwade. Adding certificate wverification is strongly advised. See: https://urllib3.readthedocs.orgl/ens latest/s
ecurity.html

InzecurelRequestilarning)
{MEind™: "tm: ltm:imonitor:httprhttpstate™, "nawe™: "Labl.2 monitor™, "fullPath™:"Labl.Z2 monitor”, "generation™:0, "selflLink":"htt
ps://localhost/momt/ t/ ltm/monitor/http/Labl.2 monitor?ver=12.0.0", "adaptive™: "disabled", "adaptivelivergenceType™:"relativ
e "adaptivelDivergenceValue™:25, "adaptivelLimit™: 200, "adaptivelamplingTimespan™: 300, "defaultsFrom™: "/ Common/ http™, "destinat
ion™:rF o FT Minterval™: 5, "ipDhscp™:0, "manualResume": "disabled”, "recv": "Hello™, "reverse™: "disabled”, "send": "GET / HTTP/1.0%rh
nyehn', "cimelUntilUp™:0, "cimeout™: 16, "cransparent™: "disabled”, "upInterval™: 0}

C:EUsersHuserHDesktDp>I

_static/image035.png
[iu]
[iu]
[iu]
[iu]
[iu]
[iu]
O
.

F5 Automation & Orchestration Intro ¥

74 requests \
Lab 1.1 - REST API ‘example’

Lab 1.2- APl Authentication
Lab 1.3 - ReviewSet Device Settings
Lab 1.4 Basic Network Connectivity
Lab 1.5 Build a Cluster

Lab 1.6 - Build a Basic LTM Config

Lab 1.7-REST AP Transactions A=

_static/image065.png
POST v i-managed-devices/devices/{{iworkflow_big_ip_a_uuid}}/rest-pro me:mtftm.fltm."pool Params

.45.hlth-:nri:hﬁeaders (2) Body @ Pre-request Script \

form-data x-www-form-urlencoded L binary JSON (application/json)
1| K

2 "name”: "rest_proxy_pool”,

3 "partition": "Common”,

4 "allowNat": "yes", &

5 "allowSnat": "yes”,

6 "loadBalancingMode™: "round-robin®,

7 "monitor”: "/Common/http ™

8 |}

_static/image069.png
C:\Users\user)Desktop'Module 3 - Python SDK»>python create pool.py 10.1.1.4 test_pool 10.1.10.10:80,10.1.10.11:80
Created pool /Common/test pool

Added member 10.1.10.10:80

Added member 10.1.10.11:80

_static/image004.png

_static/image071.png
C:\Usersiuser) Desktop\Module 3 - Python SDK>python update _pool.py 10.1.1.4 test_pool loadBalancingMode least-connections-member
u'Current: loadBalancingMode=round-robin'

Updating pool /Common/test pool

u'New: loadBalancingMode=least-connections-member'

_static/image002.png
fitter worker.

_static/image023.png
Step 1: Get 'example’ of a Pool Resource

GET Vv https://{{big_ip_a_mgmt}}/mgmt/tm/Itm/pool/example

Authorization @ Headers (2) Pre-request Script Tests

_static/up-pressed.png

_static/image053.png
Body

Preryy

Cookies Headers (1) Tests

Raw Preview | SON v 5

items™: [

1
ULid": "3830697D-5335-492- a3 - 1875569777 —

deviceUri®: "https://18.1.1.4:483",
: 3830097 -5235-492d-29¢3-1d8758e97CT"

13.0.0-0.0.5136",

0.1.1.4%,

/Conmon/bigip-a.sse. local",
ecalal6-595¢-476b-1b02C 26008034:

ranagementAddress”:
mepDeviceliane”
trustDonainGuid:

properties”: {
dnaConfigPathScope™: "basic”,
sSoapProxyEnabled”: true,
sTmshProxynabled”: false,

shared:resolver:device-groups :discoverer”:
isRestproxyEnabled”: true,
dmaFinished": true

st

50aFcfb-45d6-4723-994c-6acETFISS105”,

_static/image067.png

_static/image016.png
Body Cookies Headers(15) Tests Status: 401 F5 Authorization Required Time: 2128 ms

by Rew reiew | WMLV T3 Q Sove Resporse

B 1 |<xml version="1.0" er
2 | <1DOCTYPE html PUBLIC

oding="150-8859-1"2>
//W3C//DTD XHTML 1.8 Strict//El

_static/image057.png
Body Cookies Headers (11) Tests

Pretty Raw Preview JSON v s

1-({

2~ "items": [

3~ {

4 "ownerMachineId": "96bd241f-a4f7-4516-997@-3f70e99776d5",

5~ "cloudConnectorReference™: {

["link™: "https://localhost/mgmt/cm/cloud/connectors/local”

7 rs

8 "displayName™: "BIG-IP",

9 "connectorld": "dc63aac4-elSe-4666-a3d6-64@3132e09ch],

18 "name": "BIG-IP A&B Connector”,

11 "description™: "Local Connector for the BIG-IP A/B Cluster"”,

12 ~ "deviceGroupReference": {

13 "link™: "https://localhost/mgmt/shared/resolver/device-groups/connector-dc63aacd-elSe-4¢€
14 rs

15 ~ "deviceReferences”: [

16 ~ {

17 "link": "https://localhost/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices
18 }

19 1,

_static/image070.png
C:\Usersiuser)DesktopiModule 3 - Python 5DK>python read pool.py 10.1.1.4 test_pool
Pool /Common/test pool:
{ ' meta_data': { 'allowed cormands': [],
'allowved lazy attributes': [<class 'fS5.bigip.tm.ltm.pool.Members s'>],
'attribute registry': { "tm: ltm:pool:memberscollectionstate': <class 'fS.bigip.tm.ltm.pool.Members s'>},
'bigip': <f5.bigip.ManagementRoot object at O0x02FDCESO>,
'container': <fS.bigip.tm.ltm.pool.Pools object at OxO0ZFFSEEBO>,

'creation uri frag': '',

'creation uri gargs': { u'ver': [u'l2.0.0']1},

'exclusive attributes': [],

'icontrol_wersion': '',

'icr session': <icontrol.session.iControlRES5TSession object at Ox02FDCASO>,
'minirmum version': '11.6.0',

'read only attributes': [],

'required commwand parameters': set([]),

'required creation_parameters': set(['namwe']]),

'required json Kind': 'tm:ltm:pool:poolstate',

'required load parameters': set(['name']),

'uri': u'https://10.1.1.4:443/mogmt/ tw/ 1t/ pool/ ~Common~test_pool/'},
u'allowNat': u'yes',
u'allow3nat': u'yes',
u'fullPath': u'/Common/test_pool',
u'generation': 5191,
u' ignorePersistediieight': u'disabled’',
u'ipTosToClient': u'pass-through',
u'ipTosToServer': u'pass-through',
u'kind': u'tm:ltm:pool:poolstate’,
u'linkQosToClient': u'pass-through',
u' linkQosToServer': u'pass-through',
u' loadBalancingMode': u'round-robin',
u'membersReference': { u'isSubcollection': True,

u'link': u'https://localhost/mgut/tw/ ltw/pool/~Common~test pool/members?ver=12.0.0'},

u'minidctivelMembers': 0O,
u'minUpMenbers': 0O,
u'minUpMembersiction': u'failover!',
u'minUpMembersChecking': u'disabled’',
u'name': u'test_pool',
u'partition': u'Common',
u' queuelDepthLimit': 0O,
u' qqueueOnConnectionLimit': u'disabled’',
u'queueTimelLimit': 0O,
u'reselectTries': 0O,
u'selflink': u'https://localhost/momt/tn/ ltw/pool/~Common~test pool?ver=12.0.0',
u'servicelDowvniction': u'none',
u'slowRampTime' : 10}

_static/comment-bright.png

_static/image028.png
PATCH v hupsi/f{big ip_a_mgmi}}/mgm/m/cm/device/~Common-bigip-a.fSselocal Para

AmmruAHeaaemz; Body® PrerequestScript Tests \

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationsjson) V'

effectivelp
iveport:

"10.1.10.1",
1026,

_static/image011.png
INTRO - Automati,
Step 1: HTTP BASIC Authent

Step 1: HTTP BASIC Authentication

':"”k :

Authorization ®

Generate Code

Type

Basic Auth Clear Update Request

-
—y

Password

Save helper data to request

Show Password

_static/image005.png

_static/image013.png
POST v https://{{big_ip_a_mgmt}}/mgmt/shared/authn/login Params

Authorization Headers (1) Body @ Pre-request Script &

Key Value

Content-Type application/json

_static/image010.png
n* Collections.

i Me Team =

F5 Automation & Orchestration Intro ¥
61 requests

5 Lob12-API Authenticaon
GET Step 1: HTTP BASIC Authentication
2051 Step 2: Gt Authenticaton Token

GET Setp 3: Verify Authentication Works

PATCH Step 4: Set Authentication Token Timeout

_static/image062.png
| sostston sarces
s

Aws

&) ons

) Local raffic

@) Accelertion

) pevice Management
5 Network

System

iApps » Application Services : Applications.

P

R

nfigur Components

i sty Tpe
[E=ToS
S[JLav24_HTTP DEMO Aopicaton Servie
3 A0 w24 TP pEUOIS OQuuaiabe Vetwarserver
3 JJLab24_HTTP_DEMO_pool Qoo Pool
8Lab2 4_HTTP_DEMO_hitp_monior Montor
@ 0000 Quuaiabe Pootblember
$D01010 Quninon Node
3 J0010ims Quuaiabe Pootbember
P00 @unnon Node
5] Lab2 4_HTTP_DEMO_source-adar-persstence prote
B o105 Vitua Adress
5] Lab2 4_HTTP_DEMO,_cooki-persistence Vitua Sever Prsitence Profi

(5 Lav2.4_HTTP_DEMO_htp

[E[E e —

5] Lab2_HTTP_DEMO_op-ian-optiized

5] Lab24_HTTP_DEMO_onesonnest

5] Lab2.4_HTTP_DEMO_optiizec-caching

5] Lab2_HTTP_DEMO_wan-optiizes-sompression
3 pubish_stets

¥ publsh_stals

_static/down.png

_static/image058.png
MANAGE ENVIRONMENTS

Manage Environments

Edit Environment Bulk Edit

‘ INTRO - Automation & Orchestration Lab

Dig_ip_a_mgmt 10.1.1.4
big_ip_b_mgmt 10.1.1.5
iworkflow_mgmt 10.1.1.6
big_ip_a_auth_token QJXKEHQWZFW35VC3|RZOXWNNDQ

big_ip_b_auth_token

workflow_auth_token C25CKSFQAIC)QGKUJONCLMW7EW
iworkflow_pool_uuid 50154d6a-21cb-4644-93bd-43ccce2B9%fad
iworkflow_big_ip_a_uuid 891a87fb-b592-4fea-ae(f-f1590836027c

000000000

workflow_connector_uuid (’ dcb3aacd-e15e-4666-a3d6-6403132=09¢h

_static/image029.png
Body Cookies Headers 22) Tests Status: 200C

Q

Prety Raw Preview | JSON v

1¢
2 i ‘th:cm: sync-status :sync-statusstats”,

3 *https://localhost/mgnt/ tn/cn/sync-status2ver
i

o
5
7
5
s

10

1-
-
- "entries:
1a-

15
16~ 1
7

18

1

20 ¥

21 ¥

2 I

2 ittps: //localhost/mgnt/tm/ cn/syncStatus/0/details/1": {

2+ nestedstats™: {

25 entries™: {

2%+~ cetails™: {

27 "description”: "device_trust_group (In Sync): ALl devices in the device group are in sync”
28 ¥

29 ¥

30 ¥

31

32 https://localhost/mgnt/tn/cn/syncStatus/8/details/2"
3. estedstats'

3. entries

B ‘details™:

36 "description
37 ¥

33 3

2.0.0

:{
ittps: //localhost/mgnt/tm/ cn/syncStatus/0/details/0": {

il
oigip-bfsse tocets comected M

4

“Optional actions

_static/image030.png
POST v htpsi//{{big ip_a_mgmt}}/mgmt/tm/cm/device-group

Authorization W{leaders () Body® PrerequestSaript Ted
formdata @ xwwwform-urlencoded ® raw © binary JSON (applicationsjson)
1k
2
5
2
s
6 1

_static/image033.png
Body

Cookies Headers 22) Tests Status: 200K Time: 28 ms

Raw Prevew | ISON v

Q Sove Resporse

cn:traffic-group:traffic-groupstats
23,
https://localhost/mgnt/tn/cn/traffic-group/ traffic-group-1/stats ver=12.0.0",

4
/localnost /mgnt /tm/cn/trasFic-group/ traffic-group-1/~Comon~traffic-group-1:~Comon-bigip-a. f5se. local stats": {
nestedStats”: {

kind": "tm:cm:traffic-group:traffic-groupstats®,
SelFLink": "https://localnost/mgmt/tn/cn/trafFic-group/trafFic-group-1/~Common~trafic-group-

encrizss (
“aevicetane": {

Comon/igip. 55 o ffm—
<
tancby” —

‘description”:
[

~Common~bigip-a.fsse. local/ste

L
“failoverstate

tescription”:

nextactive™: {
escription

*/Common/traffic-group-1"

‘ttps:/ /localhost/mgnt /tn/cn/trafFic-group/ traffic-group-1/~Comon~trafFic-group-1:~Comon-bigip-b. f5se. local /stats": {
stedstats™: {

kind": "tm:cm:traffic-group:traffic-groupstats®,

‘SelfLink": "nttps://localnost/mgnt/tn/cn/trasFic-group/trafFic-group-1/~Common~traffic-group-1:~Common-bigip-b. fSse. local/ste

entries: {
Comnon /bigip-b. F5se. locol" e

“deviceNane”: {

_static/image026.png
POST v htpsi/{{big ip_a_mgmt}}/mgm/shared/authn/root

Authorization %rs(ﬂ Body Pre—requeszS(n\(s

formdata @ xwwwform-urlencoded ® raw © binary JSON (applicationsjson)
1-[¢

2 “oldpassword” "default”,

5 “newpassword”: "

2|y

_static/image056.png
POST v https://{{iworkflow_mgmt}}/ mgmt/cm/cloud/connectors/local Params

Headers (2) Body @ Pre-request Script Tests

Authorization

form-data x-www-form-urlencoded ® aw binary JSON (application/json)

1~|{

2 "name" :"BIG-IP A8B Connector”,

3 "description":"Local Connector for the BIG-IP A/B Cluster”,

4 "deviceReferences": [

5 {"link":"https: /!localhostllmgmt!shar‘edfresolver!device-groups/cn-cloud—managed-devices!devices

f{{iworkflow_big_ip_a_uuid}}"}

:]
7 |3 \

_static/comment.png

_static/image027.png
PATCH v

hicpsi/{big i

a mgmt)}/mgmt/em/auth/userfpdmi

form-data

2 o

xwww-form-urlencoded

binary

1SON (applicationjson) V'

_static/image76.png
» Step 8: View queued command 4 from Transaction

GET v https://{{big_ip_a_mgmt}}/mgmt/tm/transaction/{{transaction_id}}/commands/4 (Params
Authorization Headers (2) Pre-request Script Tests
Type No Auth v

Status: 200 C

Body Cookies (2) Headers (26) Tests

Pretty Raw Preview JSON v 5

1-({

2 "method": "POST",

3 "uri": "https://localhost/mgmt/tm/1tm/profile/tcp",
4- "body": {

5 "name": "Labl.7_tcp_clientside",

6 "nagle": "disabled",

7 "sendBufferSize": "16000"

8 1, 5

9 "evalOrder": 4, *"‘l«

10 "commandId": 4,

11 "kind": "tm:transaction:commandsstate",

12 "selfLink": "https://localhost/mgmt/tm/transaction/1490000920377121/commands/4?ver=13.0.0"

[
w
el

_static/image037.png
Body

)
3 |
E

4

Ooco~NOUT A WNPRE

Cookies Headers (26) Tests

Raw Preview JSON WV s

"transId": 1468360639660132, F
"state": "STARTED",

"timeoutSeconds": 120,
"asyncExecution": false,
"validateOnly": false,
"executionTimeout": 300,
"executionTime": @,
"failureReason": "",

"kind": "tm:transactionstate",

"selfLink": "https://localhost/mgmt/tm/transaction/14683606396601327ver=12.0.0"

_static/image074.png
GENERATE CODE SNIPPETS

Python Requests v *’ Copy to Clipboard

HTTP ts

C (LibCurl) //192.168.255.138/mgmt/tm/1tm/monitor/http"

cURL 1 \"name\" :\"Labl.2_monitor\",\n \"send\":\"GET / HTTP/1
C# (RestSharp) Ar\\N\" ,\n \"recv\":\"Hello\"\n}

type': "application/json",

ation': "Basic YWRtaW46YWRtaW4=",

1trol’': "no-cache"

Go
Java
JavaScript

juests.request("POST", url, data=payload, headers=headers)
Node)S

2. text)
Objective-C (NSURL)
OCaml (Cohttp)
P
Python http.client (Python 3)
Ruby (NET::Http) Requests k

Shell

Swift (NSURL)
B

_static/image050.png
PATCH Vv hteps:/ H{{iworkflow_mgmt}}/mgmt/shared/authz/tokens/{{iworkflow_auth_token}}

Authorizatio Headers (2) Body @ Pre-request Script Tests \

© form-data ' x-www-form-urlencoded ® raw O binary JSON (application/json)

1-|f
2 "timeout™: "36000"
3 |}

_static/image051.png
POST Vv https://{{iworkflow_mgmt}}/mgmt/shared/ resl::Iverldevice-groupslcm-clo ud-managed-devices/devices

Authorizatio eaders (2) Body @ Pre-request Script Tests \

' form-data) x-www-form-urlencoded ® raw O binary JSON (application/json)

"address":"{{big_ip_a_mgmt}}", f
"automaticallyUpdateFramework™:tr

"properties": {
"isRestProxyEnabled":true,
"isSoapProxyEnabled":true,
"isTmshProxyEnabled":false,
"dmaConfigPathScope":"basic"

4

4

WD 08 s LA e pa e

s

18 "rootUser”:"root",
11 "userMName”:"admin”,
12 "password”:"admin"

_static/image073.png
n)

Save

Generate Code

_static/image059.png
Catalo,

1 item total

Properties

Name

Input Parameters

Cloud

Application Type

Sections

Lab2.4 HTTP
® Common Options

© Alloptions

BIG-IP ARB Connector v ’—

BN

Virtual Server and Pools

Name

pool_addr

pool_port

Ppool_hosts

Ppool_members

addr

connection_imit

Description

What IP address do you want to use for the
virtual server?

What port do you want to use for the virtual
server?

What FQDNs will clients use o access the.
servers?

Host

Which web servers should be included in this

pool?

Node/IP address

Connection limit

Port

Defauit Value

80

~

Tenant Editable

_static/image068.png
C:\Users\user)DesktopiModule 3 - Python SDK>python create_pool.py

usage: create_pool.py [-h] [-P PARTITION] [-u USERNAME] [-p PASSWORD]
host pool name pool members

create_pool.py: error: too few arguments

_images/image011.png
INTRO - Automati,
Step 1: HTTP BASIC Authent

Step 1: HTTP BASIC Authentication

':"”k :

Authorization ®

Generate Code

Type

Basic Auth Clear Update Request

-
—y

Password

Save helper data to request

Show Password

_images/image023.png
Step 1: Get 'example’ of a Pool Resource

GET Vv https://{{big_ip_a_mgmt}}/mgmt/tm/Itm/pool/example

Authorization @ Headers (2) Pre-request Script Tests

_images/image031.png
Body

Prety

1e
2
3
a-
o
5
7
5
s
10
1-
-
-
1a-
5
16+
7
18
15
2
21
2
23
28+
25+
25+
27
28
2
30
31
32
3.
3.
B
36

[

Cookies Headers 22) Tests

Raw Prevew | ISON v

:sync-status:sync-statusstats”,
https://localhost/mgnt,/tn/cn/sync-status ver

tedStats": {
ntries: {
olor": {
‘description”:

ttps: //localnost/mgmt /tn/cn/ syncstatus/8/details
nestedStats™: {
entries”: {
"https: //localhost/mgnt/tm/ cn/syncStatus/0/details/0": {
estedstats'
entries

igip-b.5se. local: connecte

¥
¥
A
"https://localhost/mgnt/tm/ cn/syncStatus/0/details/1": {
nestedStats™: {
entries
‘details
description”: "DeviceGroupl (Awaiting Initial Sync:
¥
¥
¥
A

"https: //localhost/mgnt/tm/ cn/syncStatus/0/details/2": {
estedstats'
entries

- Recommended actior

Synchronize“ONe of the devices to the group”

Status: 200K Time: 42ms

Q

Save Response.

+ The device group is awaiting the initial config sync”

_images/image028.png
PATCH v hupsi/f{big ip_a_mgmi}}/mgm/m/cm/device/~Common-bigip-a.fSselocal Para

AmmruAHeaaemz; Body® PrerequestScript Tests \

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationsjson) V'

effectivelp
iveport:

"10.1.10.1",
1026,

_images/image067.png

_images/image070.png
C:\Usersiuser)DesktopiModule 3 - Python 5DK>python read pool.py 10.1.1.4 test_pool
Pool /Common/test pool:
{ ' meta_data': { 'allowed cormands': [],
'allowved lazy attributes': [<class 'fS5.bigip.tm.ltm.pool.Members s'>],
'attribute registry': { "tm: ltm:pool:memberscollectionstate': <class 'fS.bigip.tm.ltm.pool.Members s'>},
'bigip': <f5.bigip.ManagementRoot object at O0x02FDCESO>,
'container': <fS.bigip.tm.ltm.pool.Pools object at OxO0ZFFSEEBO>,

'creation uri frag': '',

'creation uri gargs': { u'ver': [u'l2.0.0']1},

'exclusive attributes': [],

'icontrol_wersion': '',

'icr session': <icontrol.session.iControlRES5TSession object at Ox02FDCASO>,
'minirmum version': '11.6.0',

'read only attributes': [],

'required commwand parameters': set([]),

'required creation_parameters': set(['namwe']]),

'required json Kind': 'tm:ltm:pool:poolstate',

'required load parameters': set(['name']),

'uri': u'https://10.1.1.4:443/mogmt/ tw/ 1t/ pool/ ~Common~test_pool/'},
u'allowNat': u'yes',
u'allow3nat': u'yes',
u'fullPath': u'/Common/test_pool',
u'generation': 5191,
u' ignorePersistediieight': u'disabled’',
u'ipTosToClient': u'pass-through',
u'ipTosToServer': u'pass-through',
u'kind': u'tm:ltm:pool:poolstate’,
u'linkQosToClient': u'pass-through',
u' linkQosToServer': u'pass-through',
u' loadBalancingMode': u'round-robin',
u'membersReference': { u'isSubcollection': True,

u'link': u'https://localhost/mgut/tw/ ltw/pool/~Common~test pool/members?ver=12.0.0'},

u'minidctivelMembers': 0O,
u'minUpMenbers': 0O,
u'minUpMembersiction': u'failover!',
u'minUpMembersChecking': u'disabled’',
u'name': u'test_pool',
u'partition': u'Common',
u' queuelDepthLimit': 0O,
u' qqueueOnConnectionLimit': u'disabled’',
u'queueTimelLimit': 0O,
u'reselectTries': 0O,
u'selflink': u'https://localhost/momt/tn/ ltw/pool/~Common~test pool?ver=12.0.0',
u'servicelDowvniction': u'none',
u'slowRampTime' : 10}

_images/image053.png
Body

Preryy

Cookies Headers (1) Tests

Raw Preview | SON v 5

items™: [

1
ULid": "3830697D-5335-492- a3 - 1875569777 —

deviceUri®: "https://18.1.1.4:483",
: 3830097 -5235-492d-29¢3-1d8758e97CT"

13.0.0-0.0.5136",

0.1.1.4%,

/Conmon/bigip-a.sse. local",
ecalal6-595¢-476b-1b02C 26008034:

ranagementAddress”:
mepDeviceliane”
trustDonainGuid:

properties”: {
dnaConfigPathScope™: "basic”,
sSoapProxyEnabled”: true,
sTmshProxynabled”: false,

shared:resolver:device-groups :discoverer”:
isRestproxyEnabled”: true,
dmaFinished": true

st

50aFcfb-45d6-4723-994c-6acETFISS105”,

_images/image016.png
Body Cookies Headers(15) Tests Status: 401 F5 Authorization Required Time: 2128 ms

by Rew reiew | WMLV T3 Q Sove Resporse

B 1 |<xml version="1.0" er
2 | <1DOCTYPE html PUBLIC

oding="150-8859-1"2>
//W3C//DTD XHTML 1.8 Strict//El

_images/image057.png
Body Cookies Headers (11) Tests

Pretty Raw Preview JSON v s

1-({

2~ "items": [

3~ {

4 "ownerMachineId": "96bd241f-a4f7-4516-997@-3f70e99776d5",

5~ "cloudConnectorReference™: {

["link™: "https://localhost/mgmt/cm/cloud/connectors/local”

7 rs

8 "displayName™: "BIG-IP",

9 "connectorld": "dc63aac4-elSe-4666-a3d6-64@3132e09ch],

18 "name": "BIG-IP A&B Connector”,

11 "description™: "Local Connector for the BIG-IP A/B Cluster"”,

12 ~ "deviceGroupReference": {

13 "link™: "https://localhost/mgmt/shared/resolver/device-groups/connector-dc63aacd-elSe-4¢€
14 rs

15 ~ "deviceReferences”: [

16 ~ {

17 "link": "https://localhost/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices
18 }

19 1,

_static/image008.png

_images/image065.png
POST v i-managed-devices/devices/{{iworkflow_big_ip_a_uuid}}/rest-pro me:mtftm.fltm."pool Params

.45.hlth-:nri:hﬁeaders (2) Body @ Pre-request Script \

form-data x-www-form-urlencoded L binary JSON (application/json)
1| K

2 "name”: "rest_proxy_pool”,

3 "partition": "Common”,

4 "allowNat": "yes", &

5 "allowSnat": "yes”,

6 "loadBalancingMode™: "round-robin®,

7 "monitor”: "/Common/http ™

8 |}

_static/image007.png
/mgmt/tm/net/route-domain/~Common~0

name 0
partition Common
fullPath /Common/0

connectionLimit O
id 0

strict enabled

_static/image036.png
POST v https://{{big_ip_a_mgmt}}/mgmt/tm/transaction

Authorization @ Headers (2) Body @ Pre-requ% Tests

form-data x-www-form-urlencoded @ raw binary JSON (application/json) Vv

;vﬁ s

_static/image001.png
y 1 chreme ;e

= - € | [3 chrome://chrome-signin/?access_point=0&rreason=0
* Apps (B BIGIPAGUL () BIGIP ARESTTOC () BIGIPBGUI () BIGIP BRESTTOC () Workflow GUI () Workflow REST TOC

AN AN

_static/image054.png
MANAGE ENVIRONMENTS

Manage Environments

Edit Environment

NTRO - Automation & Orchestraion Lab

(X

00000000

big_ip_a_mgmt

big_ip_b_mgmt

iworkflow_mgmt

big ip_a_auth_token

big_ip_b_auth_token
transaction_id

iworkfiow

sth_token

iworkfiow

iworkfiow

-

iworkflow_connector_uuid

pool_uuid / \
uid 3830b0fb-5235-492d-a0¢3-1d!

Bulk Edit

10.1.1.4
10405
10.1.1.6

Z2RKZFLEXOGZIZS2NRIEMKPYQ

1469549520752539

ZK52NCJV3QTJZIAHAACQEVS

_static/image047.png
INTRO - Automati.. Vv

Shared Environmen

No Environment

INTRO - Automation & Orchesration L.

_static/image042.png
POST v https://{{iworkflow_mgmt}}/mgmt/shared/authn/login

Authorization Headers (2) Body @ %uest Script Tests

@ form-data O x-www-form-urlencoded ® raw O binary JSON (application/json) W

1~|({

2 "username":"", k
3 "password”:"}",

4 "loginProvidername":"tmos"
5 |}

_static/image061.png
HTTP_DEMO

Properties Statistics
Lab2.4_HTTP_DEMO

General Properties

Name Lab2.4 HTTP_DEMO
Statws Appiication Service i healthy.
Appiication Type Lab2a KT

Cloud BIGP A&B Connector

Customize Application Template

Pool Addr 10.1.2050
Addr
Which web servers should be
v [+][x
included in this pool? fo010
10.1.1041 v [+][x
Name

What FQDNs will clients use to
access the servers?

example com +|[x

_static/image048.png
MANAGE ENVIRONMENTS
Manage Environments

Learn More

INTRO - Automation & Orchestration Lab (IS

_static/image017.png
Body Cookies Headers 22) Tests

Prery Row Prevew | KON v S5

1t
2 jsernane”: "adn
3| "loginRererence
a Tink’

“https: //localhost/mgnt/ cn/system/authn/providers /tnos/1f44a60e-11a7-3c51-3
-b032-0b274225232

_images/image034.png
Body Cookies Headers 22) Tests Status: 200K T

Q s

Prery Row Prevew | KON v S5

1-4

2 raffic-group: traffic-groupstats”,

3 a1,

4 hetps://Localnost/mgnt/th/cn/SrafFic-group, traffic-group-1/stats e

5o

6-| "https://localhost/mgat/tn/cn/trafFic-group/ trafFic-group-1/~Comon~trafFic-group-1:~Comon-bigip-a. fSse. local stats™: {
70 "nestedstats™: {

s ind": "tm:cm: traffic-group: trafFic-groupstats

9 C1FLink": "https://Localnost /mgnt /tn/cn/SrafFic-group/traf Fic-group-1/~Common-traffic-group-1i~Common-bigip-a. F5se.
10+ ntries”:

- deviceliane”

2 description®: "/Comon/bigip-a. F5se. Locol” WfEmm—,

5 1

14+ Fatloverstat

15 Gescriptio

15 I3

7~ extactive™: {

1 Gescription":

19

20+ rofeicroup™ {

2 ‘Gescription": "/Common/traffic-group-1"

2 ¥

2 ¥

2)

2 %

26| "https://localhost/mgnt./tn/cu/traéic-group/ traf¢ic-group-1/~Conmon-trafFic-group-1:~Comon-bigip-b. fSse. local/stats": {
27+ "nestedstats™: {

2% ind": "t cn: trafFic-group: traffic-groupstats”,

2 C1FLink": "https://Localnost /mgnt /tn/cn/SrafFis-group/traf Fic-group-1/~Common-traffic-group-1i~Common-bigip-b. F5se.
30~ ntries:

310 eviceliane: {

2 Gescription": "/Comnon/bigip-b.fSse.loca:

3

3.

35

36

_images/image044.png
Body Cookies Headers(15) Tests Status: 401 F5 Authorization Required Time: 2128 ms

by Rew reiew | WMLV T3 Q Sove Resporse

B 1 |<xml version="1.0" er
2 | <1DOCTYPE html PUBLIC

oding="150-8859-1"2>
//W3C//DTD XHTML 1.8 Strict//El

_images/image038.png
MANAGE ENVIRONMENTS

Manage Environments

Edit Environment Bulk Edit

[—

big_ip_a_mgmt 10.1.1.4

10405

(X

10.1.1.6
big ip_a_auth_token
big_ip_b_auth_token

workfi

iworkflow,_big_ip_a_uuid

workfi

. connector_uuid

ransaccon 4 —

00000000

Cancel

_images/image021.png
MANAGE ENVIRONMENTS

Manage Environments

Edit Environment Bulk Edit

INTRO - Automation & Orchestration Lab

big_ip_a_mgmt 101.1.4

big_ip_b_mgmt 10405

iworkflow_mgmt 1 10116
bigip_a_auth_token QIXKEHQWZFW35VC3IRZOXWNNDQ)

big ip_b_auth_token

00000

_images/image075.png
C:h%Usershuser’Desktop>python labl Z.py
C:WPythonz?h lib' site-packagesh requests’ packageshurllib3h connectionpool.py:821: InsecureRegquestWarning: Unwverified HTTPS re
quest iz being mwade. Adding certificate wverification is strongly advised. See: https://urllib3.readthedocs.orgl/ens latest/s
ecurity.html

InzecurelRequestilarning)
{MEind™: "tm: ltm:imonitor:httprhttpstate™, "nawe™: "Labl.2 monitor™, "fullPath™:"Labl.Z2 monitor”, "generation™:0, "selflLink":"htt
ps://localhost/momt/ t/ ltm/monitor/http/Labl.2 monitor?ver=12.0.0", "adaptive™: "disabled", "adaptivelivergenceType™:"relativ
e "adaptivelDivergenceValue™:25, "adaptivelLimit™: 200, "adaptivelamplingTimespan™: 300, "defaultsFrom™: "/ Common/ http™, "destinat
ion™:rF o FT Minterval™: 5, "ipDhscp™:0, "manualResume": "disabled”, "recv": "Hello™, "reverse™: "disabled”, "send": "GET / HTTP/1.0%rh
nyehn', "cimelUntilUp™:0, "cimeout™: 16, "cransparent™: "disabled”, "upInterval™: 0}

C:EUsersHuserHDesktDp>I

_images/image064.png
iApps » Application Services : Applications.

2 - | Prope figure Components

a=ser
@Lab2.4 HTTR_DEMO
9 [O Leb2.4_HTTP_DEMO_vs
@3 Leb24_HTTP_DEMO, oot
8Lat2._HTTP_DEMO_ptp_morior
@ 0000
$@r0r1010
@ 000
B 101101
2 d000ee
$O011012 Vil
5] Lab2_HTTP_DEMO_source-scarpersistence
A1
(5] Lab2.4_HTTP_DEMO_sookie perssence.
(5 Lav2.4_HTTP_DEMO_htp
Dl a4 HTTP DEMO too.wanontimiad

_images/image019.png
INTRO - Automation & Orct Fy

nage Environments.

] Shared ironme

Params. save

_images/image045.png
Body Cookies Headers (12) Tests

Pretty Raw Preview JSON W =
1-|{|
2 "username”: "admin”,
3~ "loginReference”: {
4 "link": "https://localhost/mgmt/cm/system/authn/providers/local/login"
5 1
6 "loginProviderName™: "local",

i~ "token™: {
8 "token": "PXS5Z4NE2KDYTIGGREOAYYALJ41™,
9 m L]

name"”: "PXSZANEZKDYTIGGRBOAYYAUJ4I™,
18 "userName”: "admin",
11 "authProviderName": "local",
12 ~ "user": {
13 "link": "https://localhost/mgmt/shared/authz/users/admin"
14 Fs
15 "groupReferences”: [],

16 "timeout": 1208,

n -5 [T R I L | P ™I ™ ™ S S oa~ -— Fe e a2l |

_images/image068.png
C:\Users\user)DesktopiModule 3 - Python SDK>python create_pool.py

usage: create_pool.py [-h] [-P PARTITION] [-u USERNAME] [-p PASSWORD]
host pool name pool members

create_pool.py: error: too few arguments

_static/up.png

_static/comment-close.png

_static/minus.png

_static/image025.png
PATCH v hupsi/i{big ip_a_mgmt}}/mgmt/tm/sys/global-settings Params

Authorization oders () Body® PrerequestSaript Tests

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationsjson) V'

_images/image035.png
[iu]
[iu]
[iu]
[iu]
[iu]
[iu]
O
.

F5 Automation & Orchestration Intro ¥

74 requests \
Lab 1.1 - REST API ‘example’

Lab 1.2- APl Authentication
Lab 1.3 - ReviewSet Device Settings
Lab 1.4 Basic Network Connectivity
Lab 1.5 Build a Cluster

Lab 1.6 - Build a Basic LTM Config

Lab 1.7-REST AP Transactions A=

_images/image037.png
Body

)
3 |
E

4

Ooco~NOUT A WNPRE

Cookies Headers (26) Tests

Raw Preview JSON WV s

"transId": 1468360639660132, F
"state": "STARTED",

"timeoutSeconds": 120,
"asyncExecution": false,
"validateOnly": false,
"executionTimeout": 300,
"executionTime": @,
"failureReason": "",

"kind": "tm:transactionstate",

"selfLink": "https://localhost/mgmt/tm/transaction/14683606396601327ver=12.0.0"

_images/image051.png
POST Vv https://{{iworkflow_mgmt}}/mgmt/shared/ resl::Iverldevice-groupslcm-clo ud-managed-devices/devices

Authorizatio eaders (2) Body @ Pre-request Script Tests \

' form-data) x-www-form-urlencoded ® raw O binary JSON (application/json)

"address":"{{big_ip_a_mgmt}}", f
"automaticallyUpdateFramework™:tr

"properties": {
"isRestProxyEnabled":true,
"isSoapProxyEnabled":true,
"isTmshProxyEnabled":false,
"dmaConfigPathScope":"basic"

4

4

WD 08 s LA e pa e

s

18 "rootUser”:"root",
11 "userMName”:"admin”,
12 "password”:"admin"

_images/image027.png
PATCH v

hicpsi/{big i

a mgmt)}/mgmt/em/auth/userfpdmi

form-data

2 o

xwww-form-urlencoded

binary

1SON (applicationjson) V'

_images/image074.png
GENERATE CODE SNIPPETS

Python Requests v *’ Copy to Clipboard

HTTP ts

C (LibCurl) //192.168.255.138/mgmt/tm/1tm/monitor/http"

cURL 1 \"name\" :\"Labl.2_monitor\",\n \"send\":\"GET / HTTP/1
C# (RestSharp) Ar\\N\" ,\n \"recv\":\"Hello\"\n}

type': "application/json",

ation': "Basic YWRtaW46YWRtaW4=",

1trol’': "no-cache"

Go
Java
JavaScript

juests.request("POST", url, data=payload, headers=headers)
Node)S

2. text)
Objective-C (NSURL)
OCaml (Cohttp)
P
Python http.client (Python 3)
Ruby (NET::Http) Requests k

Shell

Swift (NSURL)
B

_images/image073.png
n)

Save

Generate Code

_images/image005.png

_images/image050.png
PATCH Vv hteps:/ H{{iworkflow_mgmt}}/mgmt/shared/authz/tokens/{{iworkflow_auth_token}}

Authorizatio Headers (2) Body @ Pre-request Script Tests \

© form-data ' x-www-form-urlencoded ® raw O binary JSON (application/json)

1-|f
2 "timeout™: "36000"
3 |}

_images/image059.png
Catalo,

1 item total

Properties

Name

Input Parameters

Cloud

Application Type

Sections

Lab2.4 HTTP
® Common Options

© Alloptions

BIG-IP ARB Connector v ’—

BN

Virtual Server and Pools

Name

pool_addr

pool_port

Ppool_hosts

Ppool_members

addr

connection_imit

Description

What IP address do you want to use for the
virtual server?

What port do you want to use for the virtual
server?

What FQDNs will clients use o access the.
servers?

Host

Which web servers should be included in this

pool?

Node/IP address

Connection limit

Port

Defauit Value

80

~

Tenant Editable

_static/image060.png
POST v htps//{{iworkflow_mgmtj}/mgmi/cm/cloud/tenants/MyTenant/services/iapp

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationjson) V'

T
2 “name" " ab2.4_ HTTP DEND" , <

3v| “tenantTemplateReference”i{
a “Link":"nttps: //localnost/mgnt/cn/cloud tenant /templates/iapp/Lab2 .4_HTTP",
5 n

/-

7

s
s
10
1 ¥
12 1

13

12~ R
1

16
17
18 L
19+ 4
2

21
2+
23
2
2
2
27
28
2+
30
31
2
3
3 |y

CloudConnectorReference”,
ttps://1ocalnost /mgmt /cn/Cloud/ connectors /ocal/{{iworkflow_connector_uuid}}"

+"pool_hosts”,
nane],
["exanple.con"]]

L=

TEOL T, m—
0.1.20.50"

_static/image039.png
POST Vv https://{{big_ip_a_mgmt}}/mgmt/tm/Itm/monitor/http

Authorization Headers (3) Body @ Pre-request Script h

° Content-Type application/json
° X-F5-REST-Coordination-Id *— ‘{{transaction_id}}
@ Authorization Basic YWRtaW46YWRtaW4=

key value

_static/image015.png
Cookies

Raw

Headers (22)

Preview

Tests

JSON v

=

* Status: 200K Time: 97 ms

Q Sove Resporse

_static/file.png

_static/image012.png
Body Cookies Headers(15) Tests Status: 401 F5 Authorization Required Time: 2128 ms

by Rew reiew | WMLV T3 Q Sove Resporse

B 1 |<xml version="1.0" er
2 | <1DOCTYPE html PUBLIC

oding="150-8859-1"2>
//W3C//DTD XHTML 1.8 Strict//El

_static/image031.png
Body

Prety

1e
2
3
a-
o
5
7
5
s
10
1-
-
-
1a-
5
16+
7
18
15
2
21
2
23
28+
25+
25+
27
28
2
30
31
32
3.
3.
B
36

[

Cookies Headers 22) Tests

Raw Prevew | ISON v

:sync-status:sync-statusstats”,
https://localhost/mgnt,/tn/cn/sync-status ver

tedStats": {
ntries: {
olor": {
‘description”:

ttps: //localnost/mgmt /tn/cn/ syncstatus/8/details
nestedStats™: {
entries”: {
"https: //localhost/mgnt/tm/ cn/syncStatus/0/details/0": {
estedstats'
entries

igip-b.5se. local: connecte

¥
¥
A
"https://localhost/mgnt/tm/ cn/syncStatus/0/details/1": {
nestedStats™: {
entries
‘details
description”: "DeviceGroupl (Awaiting Initial Sync:
¥
¥
¥
A

"https: //localhost/mgnt/tm/ cn/syncStatus/0/details/2": {
estedstats'
entries

- Recommended actior

Synchronize“ONe of the devices to the group”

Status: 200K Time: 42ms

Q

Save Response.

+ The device group is awaiting the initial config sync”

_static/plus.png

_static/image020.png
MANAGE ENVIRONMENTS
Manage Environments

Learn More

INTRO - Automation & Orchestration Lab (IS

_static/image014.png
> Step 2: Get Authentication Token

POST v https://{{big_ip_a_mgmt}}/mgmt/shared/authn/login
Authorization Headers (1) Body ® %ﬂipt Tests
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
i {
2 "username":"",
i "?gZ::::gv{der"Name" :"tmos" k
5 1

_static/image022.png
PATCH v hups/A{big ip_a_mgme}/mgmt/shared/autha/cokens/{{big ip_a_auth_token}}

Authorizatio coders (2) Body® PrevequestSaript Tests

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationjson) V'

Body Cookies Headers 22) Tests

Pretty Raw Preview JSON v

1-4

2| "token": "QIXKSHQUZFHISVCIIRZONINNDO",

3 | mnamer: "QIKEHOIZFUISVCIIRZOGNDR'

4 | ruseriane’: "aamin®

5 | authprovidertiane": "tmos",

6v| usern: ¢

7 Tink": "https://localhost/mgat/c/systen/authn/providers/ tnos/1¢44a60e- 11273
-en2ssa2s2iar

s

9| “groupRererences”: [

- ¢

n netps: //Localnost,/mmt /ca/ system/ authn/providers/ tnos /1¥44a60e-1127

~3507-8389- 420042801 7c3"

2| 3

5

14 36000,

15 201 T13:18:38.172-0700",

_static/image018.png
GET v | hupsiiiig ip.o_mgmillimgmifemiiom Params
Authorization Headers (1) Kﬁ—requeﬂ&npz Tess

@ xF5-Auth-Token . QisHWZANESICIRZONINNDQ

key value

w
x

_images/image056.png
POST v https://{{iworkflow_mgmt}}/ mgmt/cm/cloud/connectors/local Params

Headers (2) Body @ Pre-request Script Tests

Authorization

form-data x-www-form-urlencoded ® aw binary JSON (application/json)

1~|{

2 "name" :"BIG-IP A8B Connector”,

3 "description":"Local Connector for the BIG-IP A/B Cluster”,

4 "deviceReferences": [

5 {"link":"https: /!localhostllmgmt!shar‘edfresolver!device-groups/cn-cloud—managed-devices!devices

f{{iworkflow_big_ip_a_uuid}}"}

:]
7 |3 \

_images/image76.png
» Step 8: View queued command 4 from Transaction

GET v https://{{big_ip_a_mgmt}}/mgmt/tm/transaction/{{transaction_id}}/commands/4 (Params
Authorization Headers (2) Pre-request Script Tests
Type No Auth v

Status: 200 C

Body Cookies (2) Headers (26) Tests

Pretty Raw Preview JSON v 5

1-({

2 "method": "POST",

3 "uri": "https://localhost/mgmt/tm/1tm/profile/tcp",
4- "body": {

5 "name": "Labl.7_tcp_clientside",

6 "nagle": "disabled",

7 "sendBufferSize": "16000"

8 1, 5

9 "evalOrder": 4, *"‘l«

10 "commandId": 4,

11 "kind": "tm:transaction:commandsstate",

12 "selfLink": "https://localhost/mgmt/tm/transaction/1490000920377121/commands/4?ver=13.0.0"

[
w
el

_images/image033.png
Body

Cookies Headers 22) Tests Status: 200K Time: 28 ms

Raw Prevew | ISON v

Q Sove Resporse

cn:traffic-group:traffic-groupstats
23,
https://localhost/mgnt/tn/cn/traffic-group/ traffic-group-1/stats ver=12.0.0",

4
/localnost /mgnt /tm/cn/trasFic-group/ traffic-group-1/~Comon~traffic-group-1:~Comon-bigip-a. f5se. local stats": {
nestedStats”: {

kind": "tm:cm:traffic-group:traffic-groupstats®,
SelFLink": "https://localnost/mgmt/tn/cn/trafFic-group/trafFic-group-1/~Common~trafic-group-

encrizss (
“aevicetane": {

Comon/igip. 55 o ffm—
<
tancby” —

‘description”:
[

~Common~bigip-a.fsse. local/ste

L
“failoverstate

tescription”:

nextactive™: {
escription

*/Common/traffic-group-1"

‘ttps:/ /localhost/mgnt /tn/cn/trafFic-group/ traffic-group-1/~Comon~trafFic-group-1:~Comon-bigip-b. f5se. local /stats": {
stedstats™: {

kind": "tm:cm:traffic-group:traffic-groupstats®,

‘SelfLink": "nttps://localnost/mgnt/tn/cn/trasFic-group/trafFic-group-1/~Common~traffic-group-1:~Common-bigip-b. fSse. local/ste

entries: {
Comnon /bigip-b. F5se. locol" e

“deviceNane”: {

_images/image030.png
POST v htpsi//{{big ip_a_mgmt}}/mgmt/tm/cm/device-group

Authorization W{leaders () Body® PrerequestSaript Ted
formdata @ xwwwform-urlencoded ® raw © binary JSON (applicationsjson)
1k
2
5
2
s
6 1

_images/image029.png
Body Cookies Headers 22) Tests Status: 200C

Q

Prety Raw Preview | JSON v

1¢
2 i ‘th:cm: sync-status :sync-statusstats”,

3 *https://localhost/mgnt/ tn/cn/sync-status2ver
i

o
5
7
5
s

10

1-
-
- "entries:
1a-

15
16~ 1
7

18

1

20 ¥

21 ¥

2 I

2 ittps: //localhost/mgnt/tm/ cn/syncStatus/0/details/1": {

2+ nestedstats™: {

25 entries™: {

2%+~ cetails™: {

27 "description”: "device_trust_group (In Sync): ALl devices in the device group are in sync”
28 ¥

29 ¥

30 ¥

31

32 https://localhost/mgnt/tn/cn/syncStatus/8/details/2"
3. estedstats'

3. entries

B ‘details™:

36 "description
37 ¥

33 3

2.0.0

:{
ittps: //localhost/mgnt/tm/ cn/syncStatus/0/details/0": {

il
oigip-bfsse tocets comected M

4

“Optional actions

_images/image058.png
MANAGE ENVIRONMENTS

Manage Environments

Edit Environment Bulk Edit

‘ INTRO - Automation & Orchestration Lab

Dig_ip_a_mgmt 10.1.1.4
big_ip_b_mgmt 10.1.1.5
iworkflow_mgmt 10.1.1.6
big_ip_a_auth_token QJXKEHQWZFW35VC3|RZOXWNNDQ

big_ip_b_auth_token

workflow_auth_token C25CKSFQAIC)QGKUJONCLMW7EW
iworkflow_pool_uuid 50154d6a-21cb-4644-93bd-43ccce2B9%fad
iworkflow_big_ip_a_uuid 891a87fb-b592-4fea-ae(f-f1590836027c

000000000

workflow_connector_uuid (’ dcb3aacd-e15e-4666-a3d6-6403132=09¢h

_static/image032.png
POST v htpsi//{{big ip_a_mgm}}/mgm/tm/cm/config-sync

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationsjson) V'

¥ : \

_images/image026.png
POST v htpsi/{{big ip_a_mgmt}}/mgm/shared/authn/root

Authorization %rs(ﬂ Body Pre—requeszS(n\(s

formdata @ xwwwform-urlencoded ® raw © binary JSON (applicationsjson)
1-[¢

2 “oldpassword” "default”,

5 “newpassword”: "

2|y

_static/image055.png
GET Vv https://{{iworkflow_mgmt}}/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices/devices Params

Authorizatio eaders (2) Pre-request Script Tests

Type No Auth v

Body Cookies Headers (11) Tests

Pretty Raw Preview JSON W -

"items": [
{
"uuid": "891a387fb-b592-4fea-ael@f-f1590836027c",
"deviceUri™: "https://10.1.1.4:443",

1'

2

ER

4

5

6 "machineld": "891a87flLh592-4fea-acBf-f1590836027C",
7 "state": "ACTIVE", &-
8 "address": "18.1.1.4",

9

1@

11

12

13

"httpsPort™: 443,
"hostname™: "BIGIP-12.8-A",

"version": "12.8.0@",
"product”: "BIG-IP",
"edition": "Final®,
14 "puild": "©.0.686",
15 "restFrameworkVersion": "13.8.8-98.8.5136",
16 "managementAddress”: "18.1.1.4",
17 "mcpDeviceName™: "/Common/bigip-a.f5se.local”,
18 "trustDomainGuid": "225a@84c-6abc-4e3f-afcf5254808b92dcb",

19 ~ "properties": {

_static/image072.png
CiyvUsersiyuser) besktoph llodule 5 - Python SDE>python delete_pool.py 1U.1.1.4 test_pool
Deleted pool /Common/test_pool

_static/ajax-loader.gif

_static/image77.png
> Step 9: Change Eval Order 4 ->1

PATCH v https://{{big_ip_a_mgmt}}/mgmt/tm/transaction/{{transaction_id}}/commands/4

gation Headers (2) Body @ Pre-request Script Tests

form-data x-www-form-urlencoded @ raw binary JSON (application/json) Vv

wN P

=i
"evalOrder": 1
}

Body Cookies (2) Headers (26) Tests Status: 200 (

Pretty Raw Preview JSON v 5

1-({

2 "method": "POST",

3 "uri": "https://localhost/mgmt/tm/1tm/profile/tcp",
4- "body": {

5 "name": "Labl.7_tcp_clientside",

6 "nagle": "disabled",

7 "sendBufferSize": "16000"

8 1, ¢

9 "evalOrder": 1,

10 "commandId": 4,

11 "kind": "tm:transaction:commandsstate",

12 "selfLink": "https://localhost/mgmt/tm/transaction/1489999948369391/commands/4?ver=13.0.0"

[
w
el

_static/image006.png

_static/image063.png
PUT v hepsi//{{iworkfiow_mgmt}}/mgmu/cm/cloud/tenants/MyTenant/servicesfiapp/Lab2.4_HTTP_DEMO

Authorization WgHeaders (2) Body® PrevequestSaripr Tests

formdata O xwww-form-urlencoded ® raw @ binary JSON (applicationsjson) V'

1-
2
3
a-
5
5
7
s
s
10
1~
12
13
1a-
1
16
17
18
15
2
21+
2+

_static/image043.png
Cookies

Raw

Headers (22)

Preview

Tests

JSON v

=

* Status: 200K Time: 97 ms

Q Sove Resporse

_static/down-pressed.png

_static/image046.png
GET v https://{{iworkflow_mgmt}}/mgmt/shared/authz/tokens

Authorization Headers (2) wuest Script Tests
° Content-Type T I application/json
° X-F5-Auth-Token C25CKSFQAIC)QGKUJONCLMW7eW

key value

_static/image040.png
Step 11: Commit the Transaction

o

PATCH Vv https://{{big_ip_a_mgmt}}/mgmt/tm/transaction/{{transaction_id}}

Authorizati Headers (2) Body @ Pre-request Script Tests

form-data x-www-form-urlencoded ® raw binary JSON (application/json) Vv

1-]{
2 || "state":"VALIDATING" F
3 |}

_static/image041.png
POST v https://{{iworkflow_mgmt}}/mgmt/shared/authn/login Params

Authorizati& Headers (2) Body @ Pre-request Script&ts

o Authorization k —*Basic dXNlcjp1c2Vy

° Content-Type application/json

1]
x

1]
x

key value

_static/image003.png
Table of Contents

net <l

IControl REST Resources

et f—

Traffic Management

_images/image013.png
POST v https://{{big_ip_a_mgmt}}/mgmt/shared/authn/login Params

Authorization Headers (1) Body @ Pre-request Script &

Key Value

Content-Type application/json

_images/image062.png
| sostston sarces
s

Aws

&) ons

) Local raffic

@) Accelertion

) pevice Management
5 Network

System

iApps » Application Services : Applications.

P

R

nfigur Components

i sty Tpe
[E=ToS
S[JLav24_HTTP DEMO Aopicaton Servie
3 A0 w24 TP pEUOIS OQuuaiabe Vetwarserver
3 JJLab24_HTTP_DEMO_pool Qoo Pool
8Lab2 4_HTTP_DEMO_hitp_monior Montor
@ 0000 Quuaiabe Pootblember
$D01010 Quninon Node
3 J0010ims Quuaiabe Pootbember
P00 @unnon Node
5] Lab2 4_HTTP_DEMO_source-adar-persstence prote
B o105 Vitua Adress
5] Lab2 4_HTTP_DEMO,_cooki-persistence Vitua Sever Prsitence Profi

(5 Lav2.4_HTTP_DEMO_htp

[E[E e —

5] Lab2_HTTP_DEMO_op-ian-optiized

5] Lab24_HTTP_DEMO_onesonnest

5] Lab2.4_HTTP_DEMO_optiizec-caching

5] Lab2_HTTP_DEMO_wan-optiizes-sompression
3 pubish_stets

¥ publsh_stals

_images/image010.png
n* Collections.

i Me Team =

F5 Automation & Orchestration Intro ¥
61 requests

5 Lob12-API Authenticaon
GET Step 1: HTTP BASIC Authentication
2051 Step 2: Gt Authenticaton Token

GET Setp 3: Verify Authentication Works

PATCH Step 4: Set Authentication Token Timeout

_images/image032.png
POST v htpsi//{{big ip_a_mgm}}/mgm/tm/cm/config-sync

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationsjson) V'

¥ : \

_images/image071.png
C:\Usersiuser) Desktop\Module 3 - Python SDK>python update _pool.py 10.1.1.4 test_pool loadBalancingMode least-connections-member
u'Current: loadBalancingMode=round-robin'

Updating pool /Common/test pool

u'New: loadBalancingMode=least-connections-member'

_images/image055.png
GET Vv https://{{iworkflow_mgmt}}/mgmt/shared/resolver/device-groups/cm-cloud-managed-devices/devices Params

Authorizatio eaders (2) Pre-request Script Tests

Type No Auth v

Body Cookies Headers (11) Tests

Pretty Raw Preview JSON W -

"items": [
{
"uuid": "891a387fb-b592-4fea-ael@f-f1590836027c",
"deviceUri™: "https://10.1.1.4:443",

1'

2

ER

4

5

6 "machineld": "891a87flLh592-4fea-acBf-f1590836027C",
7 "state": "ACTIVE", &-
8 "address": "18.1.1.4",

9

1@

11

12

13

"httpsPort™: 443,
"hostname™: "BIGIP-12.8-A",

"version": "12.8.0@",
"product”: "BIG-IP",
"edition": "Final®,
14 "puild": "©.0.686",
15 "restFrameworkVersion": "13.8.8-98.8.5136",
16 "managementAddress”: "18.1.1.4",
17 "mcpDeviceName™: "/Common/bigip-a.f5se.local”,
18 "trustDomainGuid": "225a@84c-6abc-4e3f-afcf5254808b92dcb",

19 ~ "properties": {

_images/image004.png

_images/image052.png
Body Cookies Headers (12) Tests

Pretty Raw Preview JSON v s
1-|{|
2 "uuid": "891a387fb-b592-4fea-aedf-f1590836027c",
3 "deviceUri": "https://10.1.1.4:443",
4 "machineId": "891a87fb-p592-4fea-aedf-f1590836027c",
5 "state"™: "PENDING",‘-
["address™: "18.1.1.4",
7 "httpsPort": 443,
8- "properties”: {
9 "izRestProxyEnabled”: true,
18 "izSoapProxyEnabled”: true,
11 "isTmshProxyEnabled”: false,
12 "dmaConfigPathScope™: "basic™
13 Is
14 "automaticallyUpdateFramework": true,
15 "groupName": "cm-cloud-managed-devices”,
16 "rootUser”: "root",
17 "ganeration™: 18,

_images/image002.png
fitter worker.

_images/image069.png
C:\Users\user)Desktop'Module 3 - Python SDK»>python create pool.py 10.1.1.4 test_pool 10.1.10.10:80,10.1.10.11:80
Created pool /Common/test pool

Added member 10.1.10.10:80

Added member 10.1.10.11:80

_images/image066.png

_images/image009.png
INTRO - Automati.. Vv

™

ge Environments
Shared Environments

No Environment

—* INTRO - Automaion & Orchestation L.

Generate Code

_images/image049.png
MANAGE ENVIRONMENTS ;

Manage Environments

Edit Environment Bulk Edit

INTRO - Automation & Orchestration Lab

o big_ip_a_mgmt 10.1.1.4

o big_ip_b_mgmt 10.1.1.5

o iworkflow_mgmt 10.1.1.6

o big_ip_a_auth_token QIXKEHOQWZFW35VC3|RZOXWNNDQ

o big_ip_b_auth_token \

o iworkflow_auth_token (C25CKSFQAICIQGKUJONCLMWZeW

° iworkflow_pool_uuid 50154d6a-21c6-4644-9abd-43cccelB80fad
° iworkflow_connector_uuid 1451c915-3627-4363-8afb-5c2527a3bd7f

nav.xhtml

 Table of Contents

 		F5 Automation & Orchestration - Introduction

 		Getting Started

 		Lab Topology

 		Module 1 – REST API Basics & Device Onboarding

 		Lab 1.1 – Exploring the iControl REST API

 		Task 1 – Explore the API using the TMOS Web Interface

 		Lab 1.2 – REST API Authentication & ‘example’ Templates

 		Task 1 – HTTP BASIC Authentication

 		Task 2 – Token Based Authentication

 		Task 2 – Get a pool ‘example’ Template

 		Lab 1.3 – Review/Set Device Settings

 		Task 1 – Set Device Hostname & Disable GUI Setup Wizard

 		Task 2 – Modify DNS/NTP Settings

 		Task 3 – Update default user account passwords

 		Lab 1.4 – Basic Network Connectivity

 		Task 1 – Create VLANs

 		Task 2 – Create Self IPs

 		Task 3 – Create Routes

 		Lab 1.5 – Build a BIG-IP Cluster

 		Task 1 – Rename objects and Setup CMI Global Parameters

 		Task 2 – Add BIG-IP-B as a Trusted Peer

 		Task 3 – Create a sync-failover Device Group

 		Task 4 – Perform Additional Operations

 		Task 5 – Create Floating Self IPs

 		Lab 1.6 – Build a Basic LTM Config

 		Task 1 – Build a Basic LTM Config

 		Lab 1.7 – REST API Transactions

 		Task 1 – Create a Transaction

 		Task 2 – Modify a Transaction

 		Task 3 – Commit a Transaction

 		Module 2 – iWorkflow

 		Lab 2.1 – iWorkflow Authentication

 		Task 1 – Token Based Authentication

 		Lab 2.2 – Discover BIG-IP Devices

 		Task 1 – Discover BIG-IP Devices

 		Lab 2.3 – Create Local Connector

 		Task 1 – Create a Local Connector

 		Lab 2.4 – Create an L4–7 Service Template & Deployment

 		Task 1 – Create L4–7 Service Template

 		Task 2 – Tenant L4-7 Service Deployment

 		Lab 2.5 – iWorkflow REST Proxy

 		Task 1 – Perform REST operations via the REST Proxy

 		Module 3 - Python SDK

 		Lab 3.1 – create_pool.py

 		Task 1 – Review create_pool.py

 		Task 2 – Run create_pool.py

 		Lab 3.2 – read_pool.py

 		Task 1 – Review read_pool.py

 		Task 2 – Run read_pool.py

 		Lab 3.3 – update_pool.py

 		Task 1 – Review update_pool.py

 		Task 2 – Run update_pool.py

 		Lab 3.4 – update_pool_member_state.py

 		Task 1 – Run update_pool_member_state.py

 		Lab 3.5 – delete_pool.py

 		Task 1 – Review delete_pool.py

 		Task 2 – Run delete_pool.py

 		Lab 3.6 – Create a Python Script

 		Task 1 – Create a simple script

 		Task 2 – Chain together multiple requests

 		Lab 3.7 – EXTRA CREDIT – Modify create_pool.py

 		Lab 3.8 – EXTRA CREDIT – Review super_pool.py

_images/image042.png
POST v https://{{iworkflow_mgmt}}/mgmt/shared/authn/login

Authorization Headers (2) Body @ %uest Script Tests

@ form-data O x-www-form-urlencoded ® raw O binary JSON (application/json) W

1~|({

2 "username":"", k
3 "password”:"}",

4 "loginProvidername":"tmos"
5 |}

_images/image047.png
INTRO - Automati.. Vv

Shared Environmen

No Environment

INTRO - Automation & Orchesration L.

_images/image024.png
Body Cookies Headers (25) Tests

Pretty Raw Preview JSON Vv -

pool members that have been up for more than 60 seconds. After
seconds, it receives approximately three quarters of the new t
useful when used with the least-connections-member load balanc

37 s

38 "allowNat": "yes",

39 "allowSnat": "yes",

40 "appService": "",

41 "autoscaleGroupId": "",

42 "description": "",

43 "gatewayFailsafeDevice": "",

44 "ignorePersistedWeight": "disabled",

45 "ipTosToClient": "pass-through",

46 "ipTosToServer": "pass-through",

47 "linkQosToClient": "pass-through",

48 "linkQosToServer": "pass-through",

49 "loadBalancingMode": "round-robin",

50 ~ "membersReference": {

51 "link": "https://localhost/mgmt/tm/1tm/pool/members/example?ver=12

52 "isSubcollection": true

3 }s

54 "metadata": [],

55 "minActiveMembers": 0,

56 "minUpMembers": @,

57 "minUpMembersAction"”: "failover",

58 "minUpMembersChecking": "disabled",

_images/image025.png
PATCH v hupsi/i{big ip_a_mgmt}}/mgmt/tm/sys/global-settings Params

Authorization oders () Body® PrerequestSaript Tests

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationsjson) V'

_images/image048.png
MANAGE ENVIRONMENTS
Manage Environments

Learn More

INTRO - Automation & Orchestration Lab (IS

_images/image008.png

_images/image061.png
HTTP_DEMO

Properties Statistics
Lab2.4_HTTP_DEMO

General Properties

Name Lab2.4 HTTP_DEMO
Statws Appiication Service i healthy.
Appiication Type Lab2a KT

Cloud BIGP A&B Connector

Customize Application Template

Pool Addr 10.1.2050
Addr
Which web servers should be
v [+][x
included in this pool? fo010
10.1.1041 v [+][x
Name

What FQDNs will clients use to
access the servers?

example com +|[x

_images/image017.png
Body Cookies Headers 22) Tests

Prery Row Prevew | KON v S5

1t
2 jsernane”: "adn
3| "loginRererence
a Tink’

“https: //localhost/mgnt/ cn/system/authn/providers /tnos/1f44a60e-11a7-3c51-3
-b032-0b274225232

_images/image036.png
POST v https://{{big_ip_a_mgmt}}/mgmt/tm/transaction

Authorization @ Headers (2) Body @ Pre-requ% Tests

form-data x-www-form-urlencoded @ raw binary JSON (application/json) Vv

;vﬁ s

_images/image007.png
/mgmt/tm/net/route-domain/~Common~0

name 0
partition Common
fullPath /Common/0

connectionLimit O
id 0

strict enabled

_images/image054.png
MANAGE ENVIRONMENTS

Manage Environments

Edit Environment

NTRO - Automation & Orchestraion Lab

(X

00000000

big_ip_a_mgmt

big_ip_b_mgmt

iworkflow_mgmt

big ip_a_auth_token

big_ip_b_auth_token
transaction_id

iworkfiow

sth_token

iworkfiow

iworkfiow

-

iworkflow_connector_uuid

pool_uuid / \
uid 3830b0fb-5235-492d-a0¢3-1d!

Bulk Edit

10.1.1.4
10405
10.1.1.6

Z2RKZFLEXOGZIZS2NRIEMKPYQ

1469549520752539

ZK52NCJV3QTJZIAHAACQEVS

_images/image041.png
POST v https://{{iworkflow_mgmt}}/mgmt/shared/authn/login Params

Authorizati& Headers (2) Body @ Pre-request Script&ts

o Authorization k —*Basic dXNlcjp1c2Vy

° Content-Type application/json

1]
x

1]
x

key value

_images/image040.png
Step 11: Commit the Transaction

o

PATCH Vv https://{{big_ip_a_mgmt}}/mgmt/tm/transaction/{{transaction_id}}

Authorizati Headers (2) Body @ Pre-request Script Tests

form-data x-www-form-urlencoded ® raw binary JSON (application/json) Vv

1-]{
2 || "state":"VALIDATING" F
3 |}

_images/image001.png
y 1 chreme ;e

= - € | [3 chrome://chrome-signin/?access_point=0&rreason=0
* Apps (B BIGIPAGUL () BIGIP ARESTTOC () BIGIPBGUI () BIGIP BRESTTOC () Workflow GUI () Workflow REST TOC

AN AN

_images/image046.png
GET v https://{{iworkflow_mgmt}}/mgmt/shared/authz/tokens

Authorization Headers (2) wuest Script Tests
° Content-Type T I application/json
° X-F5-Auth-Token C25CKSFQAIC)QGKUJONCLMW7eW

key value

_images/image006.png

_images/image77.png
> Step 9: Change Eval Order 4 ->1

PATCH v https://{{big_ip_a_mgmt}}/mgmt/tm/transaction/{{transaction_id}}/commands/4

gation Headers (2) Body @ Pre-request Script Tests

form-data x-www-form-urlencoded @ raw binary JSON (application/json) Vv

wN P

=i
"evalOrder": 1
}

Body Cookies (2) Headers (26) Tests Status: 200 (

Pretty Raw Preview JSON v 5

1-({

2 "method": "POST",

3 "uri": "https://localhost/mgmt/tm/1tm/profile/tcp",
4- "body": {

5 "name": "Labl.7_tcp_clientside",

6 "nagle": "disabled",

7 "sendBufferSize": "16000"

8 1, ¢

9 "evalOrder": 1,

10 "commandId": 4,

11 "kind": "tm:transaction:commandsstate",

12 "selfLink": "https://localhost/mgmt/tm/transaction/1489999948369391/commands/4?ver=13.0.0"

[
w
el

_images/image003.png
Table of Contents

net <l

IControl REST Resources

et f—

Traffic Management

_images/image072.png
CiyvUsersiyuser) besktoph llodule 5 - Python SDE>python delete_pool.py 1U.1.1.4 test_pool
Deleted pool /Common/test_pool

_images/image063.png
PUT v hepsi//{{iworkfiow_mgmt}}/mgmu/cm/cloud/tenants/MyTenant/servicesfiapp/Lab2.4_HTTP_DEMO

Authorization WgHeaders (2) Body® PrevequestSaripr Tests

formdata O xwww-form-urlencoded ® raw @ binary JSON (applicationsjson) V'

1-
2
3
a-
5
5
7
s
s
10
1~
12
13
1a-
1
16
17
18
15
2
21+
2+

_images/image014.png
> Step 2: Get Authentication Token

POST v https://{{big_ip_a_mgmt}}/mgmt/shared/authn/login
Authorization Headers (1) Body ® %ﬂipt Tests
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
i {
2 "username":"",
i "?gZ::::gv{der"Name" :"tmos" k
5 1

_images/image043.png
Cookies

Raw

Headers (22)

Preview

Tests

JSON v

=

* Status: 200K Time: 97 ms

Q Sove Resporse

_images/image022.png
PATCH v hups/A{big ip_a_mgme}/mgmt/shared/autha/cokens/{{big ip_a_auth_token}}

Authorizatio coders (2) Body® PrevequestSaript Tests

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationjson) V'

Body Cookies Headers 22) Tests

Pretty Raw Preview JSON v

1-4

2| "token": "QIXKSHQUZFHISVCIIRZONINNDO",

3 | mnamer: "QIKEHOIZFUISVCIIRZOGNDR'

4 | ruseriane’: "aamin®

5 | authprovidertiane": "tmos",

6v| usern: ¢

7 Tink": "https://localhost/mgat/c/systen/authn/providers/ tnos/1¢44a60e- 11273
-en2ssa2s2iar

s

9| “groupRererences”: [

- ¢

n netps: //Localnost,/mmt /ca/ system/ authn/providers/ tnos /1¥44a60e-1127

~3507-8389- 420042801 7c3"

2| 3

5

14 36000,

15 201 T13:18:38.172-0700",

_images/image060.png
POST v htps//{{iworkflow_mgmtj}/mgmi/cm/cloud/tenants/MyTenant/services/iapp

formdata @ xwww-form-urlencoded ® raw @ binary JSON (applicationjson) V'

T
2 “name" " ab2.4_ HTTP DEND" , <

3v| “tenantTemplateReference”i{
a “Link":"nttps: //localnost/mgnt/cn/cloud tenant /templates/iapp/Lab2 .4_HTTP",
5 n

/-

7

s
s
10
1 ¥
12 1

13

12~ R
1

16
17
18 L
19+ 4
2

21
2+
23
2
2
2
27
28
2+
30
31
2
3
3 |y

CloudConnectorReference”,
ttps://1ocalnost /mgmt /cn/Cloud/ connectors /ocal/{{iworkflow_connector_uuid}}"

+"pool_hosts”,
nane],
["exanple.con"]]

L=

TEOL T, m—
0.1.20.50"

_images/image020.png
MANAGE ENVIRONMENTS
Manage Environments

Learn More

INTRO - Automation & Orchestration Lab (IS

_images/image018.png
GET v | hupsiiiig ip.o_mgmillimgmifemiiom Params
Authorization Headers (1) Kﬁ—requeﬂ&npz Tess

@ xF5-Auth-Token . QisHWZANESICIRZONINNDQ

key value

w
x

_images/image012.png
Body Cookies Headers(15) Tests Status: 401 F5 Authorization Required Time: 2128 ms

by Rew reiew | WMLV T3 Q Sove Resporse

B 1 |<xml version="1.0" er
2 | <1DOCTYPE html PUBLIC

oding="150-8859-1"2>
//W3C//DTD XHTML 1.8 Strict//El

_images/image015.png
Cookies

Raw

Headers (22)

Preview

Tests

JSON v

=

* Status: 200K Time: 97 ms

Q Sove Resporse

_images/image039.png
POST Vv https://{{big_ip_a_mgmt}}/mgmt/tm/Itm/monitor/http

Authorization Headers (3) Body @ Pre-request Script h

° Content-Type application/json
° X-F5-REST-Coordination-Id *— ‘{{transaction_id}}
@ Authorization Basic YWRtaW46YWRtaW4=

key value

